Advances in Nuclear Science and Technology


Book Description

The editors are happy to present the twentieth volume in the review series Advances in Nuclear Science and Technology. Lahey and Drew, our first authors, present a concise development of the equations for two-phase flow, essential to the understanding of normal and, even more, accidental behavior in water-cooled reactors. The commitment to the PWR in Europe (now joined by England in this respect) and the aftermath of Chernobyl in the U.S.S.R. put continuing emphasis on the need for good understanding of two-phase phenomena to provide good modelling. The second review, by Downar and Sesonske, of light water reactor fuel modelling, follows this LWR interest and emphasises a current major economic interest: how to get the most out of fuel. Recollecting that the capital cost of nuclear power is high, it is easy to overlook the fact that in the lifetime of a plant as much money is spent on fuel as capital. Optimization is worthwhile. The U.S. scene still does not practice recycling whereas the European scene does. Now that the United Kingdom is building its first (commercial) light water reactor, the linear modelling of burnup exploited by the second authors will prove even more useful, although previously exploited for advanced gas-cooled reactors. If the U.K. is behind in this respect, the recycling undertaken by France and England has led to trial use of plutonium in thermal reactors but, even more, the availability of plutonium for fast reactors.







Plentiful Energy


Book Description

The Integral Fast Reactor (IFR) is a fast reactor system developed at Argonne National Laboratory in the decade 1984 to 1994. The IFR project developed the technology for a complete system; the reactor, the entire fuel cycle and the waste management technologies were all included in the development program. The reactor concept had important features and characteristics that were completely new and fuel cycle and waste management technologies that were entirely new developments. The reactor is a "fast" reactor - that is, the chain reaction is maintained by "fast" neutrons with high energy - which produces its own fuel. The IFR reactor and associated fuel cycle is a closed system. Electrical power is generated, new fissile fuel is produced to replace the fuel burned, its used fuel is processed for recycling by pyroprocessing - a new development - and waste is put in final form for disposal. All this is done on one self-sufficient site.The scale and duration of the project and its funding made it the largest nuclear energy R and D program of its day. Its purpose was the development of a long term massive new energy source, capable of meeting the nation's electrical energy needs in any amount, and for as long as it is needed, forever, if necessary. Safety, non-proliferation and waste toxicity properties were improved as well, these three the characteristics most commonly cited in opposition to nuclear power.Development proceeded from success to success. Most of the development had been done when the program was abruptly cancelled by the newly elected Clinton Administration. In his 1994 State of the Union address the president stated that "unnecessary programs in advanced reactor development will be terminated." The IFR was that program.This book gives the real story of the IFR, written by the two nuclear scientists who were most deeply involved in its conception, the development of its R and D program, and its management.Between the scientific and engineering papers and reports, and books on the IFR, and the non-technical and often impassioned dialogue that continues to this day on fast reactor technology, we felt there is room for a volume that, while accurate technically, is written in a manner accessible to the non-specialist and even to the non-technical reader who simply wants to know what this technology is.




Nuclear Reactor Engineering


Book Description

Dr. Samuel Glasstone, the senior author of the previous editions of this book, was anxious to live until his ninetieth birthday, but passed away in 1986, a few months short of this milestone. I am grateful for the many years of stimulation received during our association, and in preparing this edition have attempted to maintain his approach. Previous editions of this book were intended to serve as a text for students and a reference for practicing engineers. Emphasis was given to the broad perspective, particularly for topics important to reactor design and oper ation, with basic coverage provided in such supporting areas as neutronics, thermal-hydraulics, and materials. This, the Fourth Edition, was prepared with these same general objectives in mind. However, during the past three decades, the nuclear industry and university educational programs have matured considerably, presenting some challenges in meeting the objec tives of this book. Nuclear power reactors have become much more complex, with an ac companying growth in supporting technology. University programs now offer separate courses covering such basic topics as reactor physics, thermal hydraulics, and materials. Finally, the general availability of inexpensive xv xvi Preface powerful micro-and minicomputers has transformed design and analysis procedures so that sophisticated methods are now commonly used instead of earlier, more approximate approaches.




Status of Fast Reactor Research and Technology Development


Book Description

"Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.







Handbook of Small Modular Nuclear Reactors


Book Description

Handbook of Small Modular Nuclear Reactors, Second Edition is a fully updated comprehensive reference on Small Modular Reactors (SMRs), which reflects the latest research and technological advances in the field from the last five years. Editors Daniel T. Ingersoll and Mario D. Carelli, along with their team of expert contributors, combine their wealth of collective experience to update this comprehensive handbook that provides the reader with all required knowledge on SMRs, expanding on the rapidly growing interest and development of SMRs around the globe. This book begins with an introduction to SMRs for power generation, an overview of international developments, and an analysis of Integral Pressurized Water Reactors as a popular class of SMRs. The second part of the book is dedicated to SMR technologies, including physics, components, I&C, human-system interfaces and safety aspects. Part three discusses the implementation of SMRs, covering economic factors, construction methods, hybrid energy systems and licensing considerations. The fourth part of the book provides an in-depth analysis of SMR R&D and deployment of SMRs within eight countries, including the United States, Republic of Korea, Russia, China, Argentina, and Japan. This edition includes brand new content on the United Kingdom and Canada, where interests in SMRs have increased considerably since the first edition was published. The final part of the book adds a new analysis of the global SMR market and concludes with a perspective on SMR benefits to developing economies. This authoritative and practical handbook benefits engineers, designers, operators, and regulators working in nuclear energy, as well as academics and graduate students researching nuclear reactor technologies. - Presents the latest research on SMR technologies and global developments - Includes new case study chapters on the United Kingdom and Canada and a chapter on global SMR markets - Discusses new technologies such as floating SMRs and molten salt SMRs




Research and Highlights


Book Description




Dynamics and Control in Nuclear Power Stations


Book Description

This volume covers a wider view of the aspects of control of nuclear power stations by taking into consideration the plant as a whole and the protection systems employed therein. Authors with world-wide experience consider all the aspects of dynamics and control in the context of both fast and thermal power stations. The topics discussed include both the methods of development and applications within - analysis of plant behaviour, validation of mathematical models, plant testing, design and implementation of controls.