Integral Methods for Quadratic Programming


Book Description

This PhD thesis was written at ETH Zurich, in Prof. Dr. Emo Welzl's research group, under the supervision of Dr. Bernd Garnter. It shows two theoretical results that are both related to quadratic programming. The first one concerns the abstract optimization framework of violator spaces and the randomized procedure called Clarkson's algorithm. In a nutshell, the algorithm randomly samples from a set of constraints, computes an optimal solution subject to these constraints, and then checks whether the ignored constraints violate the solution. If not, some form of re-sampling occurs. We present the algorithm in the easiest version that can still be analyzed successfully. The second contribution concerns quadratic programming more directly. It is well-known that a simplex-like procedure can be applied to quadratic programming. The main computational effort in this algorithm comes from solving a series of linear equation systems that change gradually. We develop the integral LU decomposition of matrices, which allows us to solve the equation systems efficiently and to exploit sparse inputs. Last but not least, a considerable portion of the work included in this thesis was devoted to implementing the integral LU decomposition in the framework of the existing quadratic programming solver in the Computational Geometry Algorithms Library (CGAL). In the last two chapters we describe our implementation and the experimental results we obtained.




Optimal Quadratic Programming Algorithms


Book Description

Quadratic programming (QP) is one advanced mathematical technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This book presents recently developed algorithms for solving large QP problems and focuses on algorithms which are, in a sense optimal, i.e., they can solve important classes of problems at a cost proportional to the number of unknowns. For each algorithm presented, the book details its classical predecessor, describes its drawbacks, introduces modifications that improve its performance, and demonstrates these improvements through numerical experiments. This self-contained monograph can serve as an introductory text on quadratic programming for graduate students and researchers. Additionally, since the solution of many nonlinear problems can be reduced to the solution of a sequence of QP problems, it can also be used as a convenient introduction to nonlinear programming.




Quadratic Programming with Computer Programs


Book Description

Quadratic programming is a mathematical technique that allows for the optimization of a quadratic function in several variables. QP is a subset of Operations Research and is the next higher lever of sophistication than Linear Programming. It is a key mathematical tool in Portfolio Optimization and structural plasticity. This is useful in Civil Engineering as well as Statistics.




Control Perspectives on Numerical Algorithms and Matrix Problems


Book Description

This book organizes the analysis and design of iterative numerical methods from a control perspective. A variety of applications are discussed, including iterative methods for linear and nonlinear systems of equations, neural networks for linear and quadratic programming problems and integration and shooting methods for ordinary differential equations.




Optimal Quadratic Programming Algorithms


Book Description

Quadratic programming (QP) is one advanced mathematical technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This book presents recently developed algorithms for solving large QP problems and focuses on algorithms which are, in a sense optimal, i.e., they can solve important classes of problems at a cost proportional to the number of unknowns. For each algorithm presented, the book details its classical predecessor, describes its drawbacks, introduces modifications that improve its performance, and demonstrates these improvements through numerical experiments. This self-contained monograph can serve as an introductory text on quadratic programming for graduate students and researchers. Additionally, since the solution of many nonlinear problems can be reduced to the solution of a sequence of QP problems, it can also be used as a convenient introduction to nonlinear programming.







A Single-phase Method for Quadratic Programming


Book Description

This report describes a single-phase quadratic programming method, an active-set method which solves a sequence of equality-constraint quadratic programs.




Interior-point Polynomial Algorithms in Convex Programming


Book Description

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.







Power System Operation with Large Scale Stochastic Wind Power Integration


Book Description

This book addresses the uncertainties of wind power modeled as interval numbers and assesses the physical modeling and methods for interval power flow, interval economic dispatch and interval robust economic dispatch. In particular, the optimization models are set up to address these topics and the state-of-the-art methods are employed to efficiently solve the proposed models. Several standard IEEE test systems as well as real-world large-scale Polish power systems have been tested to verify the effectiveness of the proposed models and methods. These methods can be further applied to other research fields that are involved with uncertainty.