Semiconductors


Book Description

Because of the continuous evolution of integrated circuit manufacturing (ICM) and design for manufacturability (DfM), most books on the subject are obsolete before they even go to press. That’s why the field requires a reference that takes the focus off of numbers and concentrates more on larger economic concepts than on technical details. Semiconductors: Integrated Circuit Design for Manufacturability covers the gradual evolution of integrated circuit design (ICD) as a basis to propose strategies for improving return-on-investment (ROI) for ICD in manufacturing. Where most books put the spotlight on detailed engineering enhancements and their implications for device functionality, in contrast, this one offers, among other things, crucial, valuable historical background and roadmapping, all illustrated with examples. Presents actual test cases that illustrate product challenges, examine possible solution strategies, and demonstrate how to select and implement the right one This book shows that DfM is a powerful generic engineering concept with potential extending beyond its usual application in automated layout enhancements centered on proximity correction and pattern density. This material explores the concept of ICD for production by breaking down its major steps: product definition, design, layout, and manufacturing. Averting extended discussion of technology, techniques, or specific device dimensions, the author also avoids the clumsy chapter architecture that can hinder other books on this subject. The result is an extremely functional, systematic presentation that simplifies existing approaches to DfM, outlining a clear set of criteria to help readers assess reliability, functionality, and yield. With careful consideration of the economic and technical trade-offs involved in ICD for manufacturing, this reference addresses techniques for physical, electrical, and logical design, keeping coverage fresh and concise for the designers, manufacturers, and researchers defining product architecture and research programs.




Integrated Circuit Manufacturability


Book Description

"INTEGRATED CIRCUIT MANUFACTURABILITY provides comprehensive coverage of the process and design variables that determine the ease and feasibility of fabrication (or manufacturability) of contemporary VLSI systems and circuits. This book progresses from semiconductor processing to electrical design to system architecture. The material provides a theoretical background as well as case studies, examining the entire design for the manufacturing path from circuit to silicon. Each chapter includes tutorial and practical applications coverage. INTEGRATED CIRCUIT MANUFACTURABILITY illustrates the implications of manufacturability at every level of abstraction, including the effects of defects on the layout, their mapping to electrical faults, and the corresponding approaches to detect such faults. The reader will be introduced to key practical issues normally applied in industry and usually required by quality, product, and design engineering departments in today's design practices: * Yield management strategies * Effects of spot defects * Inductive fault analysis and testing * Fault-tolerant architectures and MCM testing strategies. This book will serve design and product engineers both from academia and industry. It can also be used as a reference or textbook for introductory graduate-level courses on manufacturing."




Design for Manufacturability and Statistical Design


Book Description

Design for Manufacturability and Statistical Design: A Comprehensive Approach presents a comprehensive overview of methods that need to be mastered in understanding state-of-the-art design for manufacturability and statistical design methodologies. Broadly, design for manufacturability is a set of techniques that attempt to fix the systematic sources of variability, such as those due to photolithography and CMP. Statistical design, on the other hand, deals with the random sources of variability. Both paradigms operate within a common framework, and their joint comprehensive treatment is one of the objectives of this book and an important differentation.




Yield and Variability Optimization of Integrated Circuits


Book Description

Traditionally, Computer Aided Design (CAD) tools have been used to create the nominal design of an integrated circuit (IC), such that the circuit nominal response meets the desired performance specifications. In reality, however, due to the disturbances ofthe IC manufacturing process, the actual performancesof the mass produced chips are different than those for the nominal design. Even if the manufacturing process were tightly controlled, so that there were little variations across the chips manufactured, the environmentalchanges (e. g. those oftemperature, supply voltages, etc. ) would alsomakethe circuit performances vary during the circuit life span. Process-related performance variations may lead to low manufacturing yield, and unacceptable product quality. For these reasons, statistical circuit design techniques are required to design the circuit parameters, taking the statistical process variations into account. This book deals with some theoretical and practical aspects of IC statistical design, and emphasizes how they differ from those for discrete circuits. It de scribes a spectrum of different statistical design problems, such as parametric yield optimization, generalized on-target design, variability minimization, per formance tunning, and worst-case design. The main emphasis of the presen tation is placed on the principles and practical solutions for performance vari ability minimization. It is hoped that the book may serve as an introductory reference material for various groups of IC designers, and the methodologies described will help them enhance the circuit quality and manufacturability. The book containsseven chapters.




Handbook of Quality Integrated Circuit Manufacturing


Book Description

Here is a comprehensive practical guide to entire wafer fabrication process from A to Z. Written by a practicing process engineer with years of experience, this book provides a thorough introduction to the complex field of IC manufacturing, including wafer area layout and design, yield optimization, just-in-time management systems, statistical quality control, fabrication equipment and its setup, and cleanroom techniques. In addition, it contains a wealth of information on common process problems: How to detect them, how to confirm them, and how to solve them. Whether you are a new enginner or technician just entering the field, a fabrication manager looking for ways to improve quality and production, or someone who would just like to know more about IC manufacturing, this is the book you're looking for.




Integrated Circuit Packaging, Assembly and Interconnections


Book Description

Reviewing the various IC packaging, assembly, and interconnection technologies, this professional reference provides an overview of the materials and the processes, as well as the trends and available options that encompass electronic manufacturing. It covers both the technical issues and touches on some of the reliability concerns with the various technologies applicable to packaging and assembly of the IC. The book discusses the various packaging approaches, assembly options, and essential manufacturing technologies, among other relevant topics.




VLSI Design for Manufacturing: Yield Enhancement


Book Description

One of the keys to success in the IC industry is getting a new product to market in a timely fashion and being able to produce that product with sufficient yield to be profitable. There are two ways to increase yield: by improving the control of the manufacturing process and by designing the process and the circuits in such a way as to minimize the effect of the inherent variations of the process on performance. The latter is typically referred to as "design for manufacture" or "statistical design". As device sizes continue to shrink, the effects of the inherent fluctuations in the IC fabrication process will have an even more obvious effect on circuit performance. And design for manufacture will increase in importance. We have been working in the area of statistically based computer aided design for more than 13 years. During the last decade we have been working with each other, and individually with our students, to develop methods and CAD tools that can be used to improve yield during the design and manufacturing phases of IC realization. This effort has resulted in a large number of publications that have appeared in a variety of journals and conference proceedings. Thus our motivation in writing this book is to put, in one place, a description of our approach to IC yield enhancement. While the work that is contained in this book has appeared in the open literature, we have attempted to use a consistent notation throughout this book.




Design for Manufacturability


Book Description

This book explains integrated circuit design for manufacturability (DfM) at the product level (packaging, applications) and applies engineering DfM principles to the latest standards of product development at 22 nm technology nodes. It is a valuable guide for layout designers, packaging engineers and quality engineers, covering DfM development from 1D to 4D, involving IC design flow setup, best practices, links to manufacturing and product definition, for process technologies down to 22 nm node, and product families including memories, logic, system-on-chip and system-in-package.




Nanoscale CMOS VLSI Circuits: Design for Manufacturability


Book Description

Cutting-Edge CMOS VLSI Design for Manufacturability Techniques This detailed guide offers proven methods for optimizing circuit designs to increase the yield, reliability, and manufacturability of products and mitigate defects and failure. Covering the latest devices, technologies, and processes, Nanoscale CMOS VLSI Circuits: Design for Manufacturability focuses on delivering higher performance and lower power consumption. Costs, constraints, and computational efficiencies are also discussed in the practical resource. Nanoscale CMOS VLSI Circuits covers: Current trends in CMOS VLSI design Semiconductor manufacturing technologies Photolithography Process and device variability: analyses and modeling Manufacturing-Aware Physical Design Closure Metrology, manufacturing defects, and defect extraction Defect impact modeling and yield improvement techniques Physical design and reliability DFM tools and methodologies




Design for Manufacturability and Yield for Nano-Scale CMOS


Book Description

This book walks the reader through all the aspects of manufacturability and yield in a nano-CMOS process. It covers all CAD/CAE aspects of a SOC design flow and addresses a new topic (DFM/DFY) critical at 90 nm and beyond. This book is a must read book the serious practicing IC designer and an excellent primer for any graduate student intent on having a career in IC design or in EDA tool development.