Integrated Nanophotonic Devices


Book Description

Nanophotonics is a field of science and technology based on the manipulation of light with equally miniscule structures, in the same way that computer chips are used to route and switch electrical signals. By enabling new high bandwidth, high speed optoelectronic components, nanophotonics has the potential to revolutionize the fields of telecommunications, computation and sensing. In this book, Zalevsky and Abdulhalim explore one of the key technologies emerging within nanophotonics, that of nano-integrated photonic modulation devices and sensors. The attempt to integrate photonic dynamic devices with microelectronic circuits is becoming a major scientific as well as industrial trend due to the fact that currently processing is mainly achieved using microelectronic chips but transmission, especially for long distances, takes place via optical links. - Unlocks the technologies that will turn the rapidly growing research area of nanophotonics into a major area of commercial development, with applications in telecommunications, computing, security and sensing - Nano-integrated photonic modulation devices and sensors are the components that will see nanophotonics moving out of the lab into a new generation of products and services - By covering the scientific fundamentals alongside technological applications, the authors open up this important multidisciplinary subject to readers from a range of scientific backgrounds




Integrated Nanophotonic Devices


Book Description

Nanophotonics is a newly developing and exciting field, with two main areas of interest: imaging/computer vision and data transport. The technologies developed in the field of nanophotonics have far reaching implications with a wide range of potential applications from faster computing power to medical applications, and "smart" eyeglasses to national security. Integrated Nanophotonic Devices explores one of the key technologies emerging within nanophotonics: that of nano-integrated photonic modulation devices and sensors. The authors introduce the scientific principles of these devices and provide a practical, applications-based approach to recent developments in the design, fabrication and experimentation of integrated photonic modulation circuits. For this second edition, all chapters have been expanded and updated to reflect this rapidly advancing field, and an entirely new chapter has been added to cover liquid crystals integrated with nanostructures. - Unlocks the technologies that will turn the rapidly growing research area of nanophotonics into a major area of commercial development, with applications in telecommunications, computing, security, and sensing - Nano-integrated photonic modulation devices and sensors are the components that will see nanophotonics moving out of the lab into a new generation of products and services - By covering the scientific fundamentals alongside technological applications, the authors open up this important multidisciplinary subject to readers from a range of scientific backgrounds




Integrated Nanophotonic Resonators


Book Description

The rapid advancement of integrated optoelectronics has been driven considerably by miniaturization. Following the path taken in electronics of reducing devices to their ultimately fundamental forms, for instance single-electron transistors, now optical devices have also been scaled down, creating the increasingly active research fields of integrated and coupled photonic system. Recently, integrated micro-/nanophotonic/electronic/mechanical resonator has seen widespread applications in biomedicine, telecommunications, sensing/detection, security, solid-state lighting, and renewable energy. The interactions between the coupled integrated micro- and nanostructures can provide us fundamental understanding and engineering of the complex systems for a variety of applications. The book aims to bring to the readers the latest developments in this rapidly emerging field. It compiles cutting-edge research from leading experts in this exciting field who form an interdisciplinary team around the world. The book also introduces fundamental knowledge on coupled integrated photonic/electronic/mechanical micro-/nanoresonators and their interactions, as well as cutting-edge research and latest developments in the field.




Integrated Nanophotonics


Book Description

Helps readers understand the important advances in nanophotonics materials development and their latest applications This book introduces the current state of and emerging trends in the development of integrated nanophotonics. Written by three well-qualified authors, it systematically reviews the knowledge of integrated nanophotonics from theory to the most recent technological developments. It also covers the applications of integrated nanophotonics in essential areas such as neuromorphic computing, biosensing, and optical communications. Lastly, it brings together the latest advancements in the key principles of photonic integrated circuits, plus the recent advances in tackling the barriers in photonic integrated circuits. Sample topics included in this comprehensive resource include: Platforms for integrated nanophotonics, including lithium niobate nanophotonics, indium phosphide nanophotonics, silicon nanophotonics, and nonlinear optics for integrated photonics The devices and technologies for integrated nanophotonics in on-chip light sources, optical packaging of photonic integrated circuits, optical interconnects, and light processing devices Applications on neuromorphic computing, biosensing, LIDAR, and computing for AI and artificial neural network and deep learning Materials scientists, physicists, and physical chemists can use this book to understand the totality of cutting-edge theory, research, and applications in the field of integrated nanophotonics.




Fundamentals and Applications of Nanophotonics


Book Description

Fundamentals and Applications of Nanophotonics includes a comprehensive discussion of the field of nanophotonics, including key enabling technologies that have the potential to drive economic growth and impact numerous application domains such as ICT, the environment, healthcare, military, transport, manufacturing, and energy. This book gives readers the theoretical underpinnings needed to understand the latest advances in the field. After an introduction to the area, chapters two and three cover the essential topics of electrodynamics, quantum mechanics, and computation as they relate to nanophotonics. Subsequent chapters explore materials for nanophotonics, including nanoparticles, photonic crystals, nanosilicon, nanocarbon, III-V, and II-VI semiconductors. In addition, fabrication and characterization techniques are addressed, along with the importance of plasmonics, and the applications of nanophotonics in devices such as lasers, LEDs, and photodetectors. - Covers electrodynamics, quantum mechanics and computation as these relate to nanophotonics - Reviews materials, fabrication and characterization techniques for nanophotonics - Describes applications of the technology such as lasers, LEDs and photodetectors




Nanophotonics


Book Description

This book investigates the behavior of light (light pulse) within the micro- and nano-scale device (ring resonator), which can be integrated to form the device, circuits, and systems that can be used for atom/molecule trapping and transportation, optical transistor, fast calculation devices (optical gate), nanoscale communication and networks, and energy storage, etc. The large demand of small-scale device, especially, with light signal processing is needed. This book discusses device (nano device) design and simulation, which can be useful for practice in the near future.




Integrated Nanophotonic Resonators


Book Description

The rapid advancement of integrated optoelectronics has been driven considerably by miniaturization. Following the path taken in electronics of reducing devices to their ultimately fundamental forms, for instance single-electron transistors, now optical devices have also been scaled down, creating the increasingly active research fields of integrat




Nanolithography


Book Description

Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing – some components are now just a few dozen atoms wide. This book attempts to answer the questions, "What comes next? and "How do we get there?Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics.This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. - Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions - Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography - Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics




Femtosecond Laser Micromachining


Book Description

Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.




Quantum Nano-Photonics


Book Description

This book brings together more closely researchers working in the two fields of quantum optics and nano-optics and provides a general overview of the main topics of interest in applied and fundamental research. The contributions cover, for example, single-photon emitters and emitters of entangled photon pairs based on epitaxially grown semiconductor quantum dots, nitrogen vacancy centers in diamond as single-photon emitters, coupled quantum bits based on trapped ions, integrated waveguide superconducting nanowire single-photon detectors, quantum nano-plasmonics, nanosensing, quantum aspects of biophotonics and quantum metamaterials. The articles span the bridge from pedagogical introductions on the fundamental principles to the current state-of-the-art, and are authored by pioneers and leaders in the field. Numerical simulations are presented as a powerful tool to gain insight into the physical behavior of nanophotonic systems and provide a critical complement to experimental investigations and design of devices.