Integrated Power Electronic Converters and Digital Control


Book Description

Because of the demand for higher efficiencies, smaller output ripple, and smaller converter size for modern power electronic systems, integrated power electronic converters could soon replace conventional switched-mode power supplies. Synthesized integrated converters and related digital control techniques address problems related to cost, space, flexibility, energy efficiency, and voltage regulation—the key factors in digital power management and implementation. Meeting the needs of professionals working in power electronics, as well as advanced engineering students, Integrated Power Electronic Converters and Digital Control explores the many benefits associated with integrated converters. This informative text details boost type, buck type, and buck-boost type integrated topologies, as well as other integrated structures. It discusses concepts behind their operation as well specific applications. Topics discussed include: Isolated DC-DC converters such as flyback, forward, push-pull, full-bridge, and half-bridge Power factor correction and its application Definition of the integrated switched-mode power supplies Steady-state analysis of the boost integrated flyback rectifier energy storage converter Dynamic analysis of the buck integrated forward converter Digital control based on the use of digital signal processors (DSPs) With innovations in digital control becoming ever more pervasive, system designers continue to introduce products that integrate digital power management and control integrated circuit solutions, both hybrid and pure digital. This detailed assessment of the latest advances in the field will help anyone working in power electronics and related industries stay ahead of the curve.







Control of Power Electronic Converters and Systems


Book Description

Control of Power Electronic Converters and Systems, Volume 3, explores emerging topics in the control of power electronics and converters, including the theory behind control, and the practical operation, modeling, and control of basic power system models. This book introduces the most important controller design methods, including both analog and digital procedures. This reference explains the dynamic characterization of terminal behavior for converters, as well as preserving the stability and power quality of modern power systems. Useful for engineers in emerging applications of power electronic converters and those combining control design methods into different applications in power electronics technology. Addressing controller interactions - in light of increasing renewable energy integration and related challenges with stability and power quality - is becoming more frequent in power converters and passive components. Discusses different applications and their control in integrated renewable energy systems Introduces the most important controller design methods, both in analog and digital Describes different important applications to be used in future industrial products Explains the dynamic characterization of terminal behavior for converters




Digital Power Electronics and Applications


Book Description

The purpose of this book is to describe the theory of Digital Power Electronics and its applications. The authors apply digital control theory to power electronics in a manner thoroughly different from the traditional, analog control scheme. In order to apply digital control theory to power electronics, the authors define a number of new parameters, including the energy factor, pumping energy, stored energy, time constant, and damping time constant. These parameters differ from traditional parameters such as the power factor, power transfer efficiency, ripple factor, and total harmonic distortion. These new parameters result in the definition of new mathematical modeling: • A zero-order-hold (ZOH) is used to simulate all AC/DC rectifiers. • A first-order-hold (FOH) is used to simulate all DC/AC inverters. • A second-order-hold (SOH) is used to simulate all DC/DC converters. • A first-order-hold (FOH) is used to simulate all AC/AC (AC/DC/AC) converters. Presents most up-to-date methods of analysis and control algorithms for developing power electronic converters and power switching circuits Provides an invaluable reference for engineers designing power converters, commercial power supplies, control systems for motor drives, active filters, etc. Presents methods of analysis not available in other books




Control of Power Electronic Converters and Systems


Book Description

Control of Power Electronic Converters, Volume Two gives the theory behind power electronic converter control and discusses the operation, modelling and control of basic converters. The main components of power electronics systems that produce a desired effect (energy conversion, robot motion, etc.) by controlling system variables (voltages and currents) are thoroughly covered. Both small (mobile phones, computer power supplies) and very large systems (trains, wind turbines, high voltage power lines) and their power ranges, from the Watt to the Gigawatt, are presented and explored. Users will find a focused resource on how to apply innovative control techniques for power converters and drives. Discusses different applications and their control Explains the most important controller design methods, both in analog and digital Describes different, but important, applications that can be used in future industrial products Covers voltage source converters in significant detail Demonstrates applications across a much broader context




Digital Control of High-Frequency Switched-Mode Power Converters


Book Description

This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also provided




Control of Power Electronic Converters and Systems


Book Description

Control of Power Electronic Converters and Systems examines the theory behind power electronic converter control, including operation, modeling and control of basic converters. The book explores how to manipulate components of power electronics converters and systems to produce a desired effect by controlling system variables. Advances in power electronics enable new applications to emerge and performance improvement in existing applications. These advances rely on control effectiveness, making it essential to apply appropriate control schemes to the converter and system to obtain the desired performance. Discusses different applications and their control Explains the most important controller design methods both in analog and digital Describes different important applications to be used in future industrial products Covers voltage source converters in significant detail Demonstrates applications across a much broader context




Digital Control in Power Electronics


Book Description

This book presents the reader, whether an electrical engineering student in power electronics or a design engineer, some typical power converter control problems and their basic digital solutions, based on the most widespread digital control techniques. The presentation is focused on different applications of the same power converter topology, the half-bridge voltage source inverter, considered both in its single- and three-phase implementation. This is chosen as the case study because, besides being simple and well known, it allows the discussion of a significant spectrum of the more frequently encountered digital control applications in power electronics, from digital pulse width modulation (DPWM) and space vector modulation (SVM), to inverter output current and voltage control. The book aims to serve two purposes: to give a basic, introductory knowledge of the digital control techniques applied to power converters, and to raise the interest for discrete time control theory, stimulating new developments in its application to switching power converters.




Digital Control in Power Electronics


Book Description

This book presents the reader, whether an electrical engineering student in power electronics or a design engineer, a selection of power converter control problems and their basic digital solutions, based on the most widespread digital control techniques. The presentation is primarily focused on different applications of the same power converter topology, the half-bridge voltage source inverter, considered both in its single- and three-phase implementation. This is chosen as the test case because, besides being simple and well known, it allows the discussion of a significant spectrum of the most frequently encountered digital control applications in power electronics, from digital pulse width modulation (DPWM) and space vector modulation (SVM), to inverter output current and voltage control, ending with the relatively more complex VSI applications related to the so called smart-grid scenario. This book aims to serve two purposes: (1) to give a basic, introductory knowledge of the digital control techniques applied to power converters; and (2) to raise the interest for discrete time control theory, stimulating new developments in its application to switching power converters.




Control of Power Electronic Converters and Systems: Volume 4


Book Description

Control of Power Electronic Converters and Systems, Volume Four covers emerging topics in the control of power electronics and converters not covered in previous volumes, including emerging power converter topologies, storage systems, battery chargers and the smart transformer. This updated edition specifically focuses on emerging power converter topologies and discusses very recent advances and topics with applications in power electronics and formidable probable dynamics. Chapters include modeling of power converters and their control, with supportive simulations and additional experimental results. Anyone looking for fundamental knowledge regarding new trends in power electronics by application, and also ready to use models and methodologies in their design, control and testing will find this the next invaluable resource in this highly regarded series. Combines essential control design methods and trends with different applications of power convertor topologies Includes global perspectives, case studies and real examples from different applications and their control Features ready-to-use models and methodologies in power electronic application, their design, control and testing