Integrating Wind Energy to Weak Power Grids using High Voltage Direct Current Technology


Book Description

This book is the first of its kind to provide a comprehensive framework for connecting wind farms to weak power grids using High Voltage DC technology. Most onshore wind energy potential is located in areas that are hardly inhabited and the majority of wind energy that is being harnessed by European countries is currently offshore, both sourced from locations that lack the presence of a strong power grid. This book focuses on the many challenges the wind farm industry faces integrating both onshore and offshore wind to ‘weak’ grids using HVDC technology. Through case studies and illustrative examples the author presents a framework for theoretical and mathematical analysis of HVDC technology, its application and successful integration of onshore and offshore wind farms. Presents a unified approach for integrating onshore and offshore wind energy to existing AC systems through MTDC grids; Includes an extensive treatment of onshore wind farms connected to LCC HVDC systems; Provides a comprehensive analysis of offshore wind farms connected to VSC HVDC systems.




Power Conversion and Control of Wind Energy Systems


Book Description

The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.




Future of wind


Book Description

This study presents options to speed up the deployment of wind power, both onshore and offshore, until 2050. It builds on IRENA’s global roadmap to scale up renewables and meet climate goals.




Wind Power in Power Systems


Book Description

The second edition of the highly acclaimed Wind Power in Power Systems has been thoroughly revised and expanded to reflect the latest challenges associated with increasing wind power penetration levels. Since its first release, practical experiences with high wind power penetration levels have significantly increased. This book presents an overview of the lessons learned in integrating wind power into power systems and provides an outlook of the relevant issues and solutions to allow even higher wind power penetration levels. This includes the development of standard wind turbine simulation models. This extensive update has 23 brand new chapters in cutting-edge areas including offshore wind farms and storage options, performance validation and certification for grid codes, and the provision of reactive power and voltage control from wind power plants. Key features: Offers an international perspective on integrating a high penetration of wind power into the power system, from basic network interconnection to industry deregulation; Outlines the methodology and results of European and North American large-scale grid integration studies; Extensive practical experience from wind power and power system experts and transmission systems operators in Germany, Denmark, Spain, UK, Ireland, USA, China and New Zealand; Presents various wind turbine designs from the electrical perspective and models for their simulation, and discusses industry standards and world-wide grid codes, along with power quality issues; Considers concepts to increase penetration of wind power in power systems, from wind turbine, power plant and power system redesign to smart grid and storage solutions. Carefully edited for a highly coherent structure, this work remains an essential reference for power system engineers, transmission and distribution network operator and planner, wind turbine designers, wind project developers and wind energy consultants dealing with the integration of wind power into the distribution or transmission network. Up-to-date and comprehensive, it is also useful for graduate students, researchers, regulation authorities, and policy makers who work in the area of wind power and need to understand the relevant power system integration issues.




IICTSS 2022 Proceedings Book


Book Description

Welcome to IICTSS 2022, On behalf of the organizing committee, we plan to organize the conference every two years in the future. This is the first time we organize the conference so we are very pleased to welcome all participants. İzmir International Conference on Technology and Social Sciences Proceedings book is a publication designed to disseminate developments and new trends in the quantitative and theoretical research of issues technology in Social Sciences. Full papers included in this book have been accepted by evaluation by the peer-review evaluation process. We hope that this special book will lead to further research about technology in social sciences. We would like to thank many reviewers for their help and the authors for submitting their research studies.




Power Electronics Applications in Renewable Energy Systems


Book Description

The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters.




Global Energy Interconnection


Book Description

Global energy network is an important platform to guarantee effective exploitation of global clean energy and ensure reliable energy supply for everybody. Global Energy Interconnection analyzes the current situation and challenges of global energy development, provides the strategic thinking, overall objective, basic pattern, construction method and development mode for the development of global energy network. Based on the prediction of global energy and electricity supply and demand in the future, with the development of UHV AC/DC and smart grid technologies, this book offers new solutions to drive the safe, clean, highly efficient and sustainable development of global energy. The concept and development ideas concerning global energy interconnection in this book are based on the author's thinking of strategic issues about China's and the world's energy and electricity development for many years, especially combined with successful practices of China's UHV development. This book is particularly suitable for researchers and graduated students engaged in energy sector, as well as energy economics researchers, economists, consultants, and government energy policy makers in relevant fields. - Based on the author's many years' experience in developing Smart Grid solutions within national and international projects. - Combines both solid background information and cutting-edge technology progress, coupled with a useful and impressive list of references. - The key energy problems which are challenging us nowadays are well stated and explained in this book, which facilitates a better understanding of the development of global energy interconnection with UHV AC/DC and smart grid technologies.




Design and Implementation of Voltage Source Converters in HVDC Systems


Book Description

This book looks at the control of voltage source converter based high voltage direct current (VSC-HVDC). The objective is to understand the control structure of the VSC-HVDC system and establish the tuning criteria for the proportional-integral (PI) control of the converter controllers. Coverage includes modeling of the VSC-based HVDC transmission system using MATLAB and Simulink simulation package; implementation of control strategies for the VSC-based HVDC transmission system; and analysis of the developed system behavior under different conditions (normal and fault conditions). The book provides researchers, students, and engineers working in electrical power system transmission and power electronics and control in power transmission with a good understanding of the VSC-based HVDC transmission system concept and its behavior.




HVDC/FACTS for Grid Services in Electric Power Systems


Book Description

Electric power systems are headed for a true changing of the guard, due to the urgent need for achieving sustainable energy delivery. Fortunately, the development of new technologies is driving the transition of power systems toward a carbon-free paradigm while maintaining the current standards of quality, efficiency, and resilience. The introduction of HVDC and FACTS in the 20th century, taking advantage of dramatic improvements in power electronics and control, gave rise to unprecedented levels of flexibility and speed of response in comparison with traditional electromechanical devices. This flexibility is nowadays required more than ever in order to solve a puzzle with pieces that do not always fit perfectly. This Special Issue aims to address the role that FACTS and HVDC systems can play in helping electric power systems face the challenges of the near future.




2018 Technologies for Smart City Energy Security and Power (ICSESP)


Book Description

To determine the challenges in developing smart energy infrastructure To find solutions to eradicate power flow and power quality issues To avoid blackouts through microgrids and distributed generation To analyze development of infrastructure focusing on electrification of transportation To develop and discuss safety and security solutions for power terrorism To enhance computing and telecommunication systems to improve efficiency