Integration of Charging Behavior Into Infrastructure Planning of Electric Vehicles


Book Description

Electric vehicle (EV) market growth is critical to achieving sustainable development goals, governing aspirations to achieve full-scale electrification targets across the globe. Increasing EV sales have shifted the focus of researchers from EV adoption to new operational challenges such as the optimal deployment of charging stations and grid load management, which in turn also affects EV adoption. These challenges require an accurate characterization of EV user charging behavior, especially with evolving battery technology and driving ranges. This study critically reviews approaches and data sources used to elicit EV charging behavior and patterns from a demand-side perspective and investigates how supply-side studies on charging infrastructure deployment and management incorporate charging behavior. We observe a noticeable disconnect between both strands of the literature, as supply-side studies still rely on simplistic assumptions about charging behavior and focus on a handful of aspects in isolation. More specifically, several studies either consider personal EVs or ride-hailing services with only public fast-charging infrastructure while ignoring available home/work charging infrastructure. We recommend shifting from this silo approach to a system-level dynamic planning framework where future charging demand is forecasted by combining charging behavior models with the models to forecast travel demand and EV adoption, followed by an integration of demand information into the supply-side optimization. The framework can thus capture complex supply-demand interactions and inform the charging infrastructure planning policies, laying out a roadmap for emerging and mature EV markets.




Three Revolutions


Book Description

Front Cover -- About Island Press -- Subscribe -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- 1. Will the Transportation Revolutions Improve Our Lives-- or Make Them Worse? -- 2. Electric Vehicles: Approaching the Tipping Point -- 3. Shared Mobility: The Potential of Ridehailing and Pooling -- 4. Vehicle Automation: Our Best Shot at a Transportation Do-Over? -- 5. Upgrading Transit for the Twenty-First Century -- 6. Bridging the Gap between Mobility Haves and Have-Nots -- 7. Remaking the Auto Industry -- 8. The Dark Horse: Will China Win the Electric, Automated, Shared Mobility Race? -- Epilogue -- Notes -- About the Contributors -- Index -- IP Board of Directors




Network-wide Charging Infrastructure Planning and Market Share Analysis for Electric Vehicles


Book Description

Electric vehicles (EVs) are widely considered a sustainable substitution to conventional vehicles to mitigate fossil fuel dependence and reduce tail-pipe emissions. However, limited ranges, long charging times, and lack of charging infrastructure have hindered EV's market acceptance. This calls for more investments in building charging stations and advancing battery and charging technologies to obviate issues associated with EVs and increase their market share and improve sustainability. This study introduces modeling frameworks to optimize fast-charging infrastructure locations at the network level to address the challenges associated with EVs. Furthermore, it investigates the required charging investments for the current and future EV market shares, technology advancements, and seasonal demand variations. First, this study seeks an optimal configuration for plug-in electric vehicle charging infrastructure that supports their long-distance intercity trips at the network level. A mathematical optimization model is proposed which minimizes the total system cost and considers the range anxiety, multiple refueling, maximum capacity, charging delay, and detour time. This study considers the impacts of charging station locations on the traffic assignment problem with a mixed fleet of electric and conventional vehicles considering a user equilibrium framework. This study fills existing gaps in the literature by capturing realistic patterns of travel demand and considering flow-dependent charging delays at charging stations in intercity networks. Then, the study focuses on Michigan and its future needs to support the intercity trips of EVs across the state in two target years of 2020 and 2030, considering monthly traffic demand and battery performance variations, as well as different battery sizes and charger technologies, the main contributing factors in defining the infrastructure needs of EV users, particularly in states with adverse weather conditions. This study incorporates the developed intercity model to suggest the optimal locations of EV fast chargers to be implemented in Michigan.Next, this study introduces an integrated framework for urban fast-charging infrastructure to address the range anxiety issue in urban networks. Unlike intercity trips that start with fully charged batteries, urban trips might start with any state of charge because of home/work chargers' unavailability, being part of a trip chain, and forgetting to charge overnight. A mesoscopic simulation tool is incorporated to generate trip trajectories, and a state-of-the-art tool is developed to simulate charging behavior based on various trip attributes for these trajectories. The resulting temporal charging demand is the key element in finding the optimum charging infrastructure. The solution quality and significant superiority in the computational efficiency of the decomposition approach are confirmed in comparison with the implicit enumeration approach. Finally, this study generates forecasting models to estimate the number of chargers and charging stations to support the EV charging demand for urban areas. These models provide macro-level estimates of the required infrastructure investment in urban areas, which can be easily implemented by policy-makers and city planners. This study incorporates data obtained from applying a disaggregate optimization-based charger placement model, for multiple case studies to generate the required data to calibrate the macro-level models, in the state of Michigan.




Fast-Charging Infrastructure Planning Model for Urban Electric Vehicles


Book Description

Electric vehicles have become a trend as a replacement to gasoline-powered vehicles and will be a sustainable substitution to conventional vehicles. As the number of electric vehicles in cities increases, the charging demand has surged. The optimal location of the charging station plays an important role in the electric vehicle transit system. This chapter discusses the planning of electric vehicle charging infrastructure for urban. The purpose of this work develops an electric vehicle fast-charging facility planning model by considering battery degradation and vehicle heterogeneity in driving range, and considering various influencing factors such as traffic conditions, user charging costs, daily travel, charging behavior, and distribution network constraints. This work identifies optimal fast-charging stations to minimize the total cost of the transit system for deploying fast-charging networks. Besides, this chapter also analyzes some optimization modeling approach for the fast charging location planning, and point out future research directions.




Developing Charging Infrastructure and Technologies for Electric Vehicles


Book Description

The increase in air pollution and vehicular emissions has led to the development of the renewable energy-based generation and electrification of transportation. Further, the electrification shift faces an enormous challenge due to limited driving range, long charging time, and high initial cost of deployment. Firstly, there has been a discussion on renewable energy such as how wind power and solar power can be generated by wind turbines and photovoltaics, respectively, while these are intermittent in nature. The combination of these renewable energy resources with available power generation system will make electric vehicle (EV) charging sustainable and viable after the payback period. Recently, there has also been a significant discussion focused on various EV charging types and the level of power for charging to minimize the charging time. By focusing on both sustainable and renewable energy, as well as charging infrastructures and technologies, the future for EV can be explored. Developing Charging Infrastructure and Technologies for Electric Vehicles reviews and discusses the state of the art in electric vehicle charging technologies, their applications, economic, environmental, and social impact, and integration with renewable energy. This book captures the state of the art in electric vehicle charging infrastructure deployment, their applications, architectures, and relevant technologies. In addition, this book identifies potential research directions and technologies that facilitate insights on EV charging in various charging places such as smart home charging, parking EV charging, and charging stations. This book will be essential for power system architects, mechanics, electrical engineers, practitioners, developers, practitioners, researchers, academicians, and students interested in the problems and solutions to the state-of-the-art status of electric vehicles.




Planning the Charging Infrastructure for Electric Vehicles in Cities and Regions


Book Description

Planning the charging infrastructure for electric vehicles (EVs) is a new challenging task. This book treats all involved aspects: charging technologies and norms, interactions with the electricity system, electrical installation, demand for charging infrastructure, economics of public infrastructure provision, policies in Germany and the EU, external effects, stakeholder cooperation, spatial planning on the regional and street level, operation and maintenance, and long term spatial planning.




Electric Vehicle Integration into Modern Power Networks


Book Description

Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES-UETP umbrella in 2010 and 2011, this contributed volume consists of nine chapters written by leading researchers and professionals from the industry as well as academia.




Transitions to Alternative Vehicles and Fuels


Book Description

For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005. This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.




Overcoming Barriers to Electric-vehicle Deployment


Book Description

The electric vehicle offers many promises--increasing U.S. energy security by reducing petroleum dependence, contributing to climate-change initiatives by decreasing greenhouse gas (GHG) emissions, stimulating long-term economic growth through the development of new technologies and industries, and improving public health by improving local air quality. There are, however, substantial technical, social, and economic barriers to widespread adoption of electric vehicles, including vehicle cost, small driving range, long charging times, and the need for a charging infrastructure. In addition, people are unfamiliar with electric vehicles, are uncertain about their costs and benefits, and have diverse needs that current electric vehicles might not meet. Although a person might derive some personal benefits from ownership, the costs of achieving the social benefits, such as reduced GHG emissions, are borne largely by the people who purchase the vehicles. Given the recognized barriers to electric-vehicle adoption, Congress asked the Department of Energy (DOE) to commission a study by the National Academies to address market barriers that are slowing the purchase of electric vehicles and hindering the deployment of supporting infrastructure. As a result of the request, the National Research Council (NRC)--a part of the National Academies--appointed the Committee on Overcoming Barriers to Electric-Vehicle Deployment. This committee documented their findings in two reports--a short interim report focused on near-term options, and a final comprehensive report. Overcoming Barriers to Electric-Vehicle Deployment fulfills the request for the short interim report that addresses specifically the following issues: infrastructure needs for electric vehicles, barriers to deploying the infrastructure, and possible roles of the federal government in overcoming the barriers. This report also includes an initial discussion of the pros and cons of the possible roles. This interim report does not address the committee's full statement of task and does not offer any recommendations because the committee is still in its early stages of data-gathering. The committee will continue to gather and review information and conduct analyses through late spring 2014 and will issue its final report in late summer 2014. Overcoming Barriers to Electric-Vehicle Deployment focuses on the light-duty vehicle sector in the United States and restricts its discussion of electric vehicles to plug-in electric vehicles (PEVs), which include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The common feature of these vehicles is that their batteries are charged by being plugged into the electric grid. BEVs differ from PHEVs because they operate solely on electricity stored in a battery (that is, there is no other power source); PHEVs have internal combustion engines that can supplement the electric power train. Although this report considers PEVs generally, the committee recognizes that there are fundamental differences between PHEVs and BEVs.




Integrated Approaches to EV Charging Infrastructure and Transit System Planning


Book Description

This study provides policy insights into integrating electric vehicle (EV) infrastructure development with transit systems. It explores opportunities related to underutilized parking spots that are suitable for both EV charging and transit connections, either on site or in proximity to transit stations. Distinct from the existing practice, the study takes into account both work trips and activity based trips (ABT), which involves multiple trip segments/purposes on commuting trips. To advocate for an active role of the public sector in the integrated EV-transit design, it proposes a generic planning model for siting EV charging either on site or in proximity to transit stations. To implement the proposed planning process, the study developed a Suitability Index (SI) for EV charging station siting in connection to transit stations, discusses anticipated impacts of implementing the integrated EV-Transit programs, and quantifies the environmental impacts of anticipated travel behavior changes. Through case studies, the project reviewed the existing programs that integrate EV charging infrastructure with transit systems, quantitatively applies the proposed planning framework in the Chicago metropolitan region and derives the SI rating for commuter rail stations (for work trips) and shopping centers close to transit stops (for ABT trips).