Intelligence of Low Dimensional Topology 2006


Book Description

This volume gathers the contributions from the international conference ?Intelligence of Low Dimensional Topology 2006,? which took place in Hiroshima in 2006. The aim of this volume is to promote research in low dimensional topology with the focus on knot theory and related topics. The papers include comprehensive reviews and some latest results.




Intelligence Of Low Dimensional Topology 2006


Book Description

This volume gathers the contributions from the international conference “Intelligence of Low Dimensional Topology 2006,” which took place in Hiroshima in 2006. The aim of this volume is to promote research in low dimensional topology with the focus on knot theory and related topics. The papers include comprehensive reviews and some latest results.




New Ideas In Low Dimensional Topology


Book Description

This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.




Knots, Low-Dimensional Topology and Applications


Book Description

This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications – Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.




Encyclopedia of Knot Theory


Book Description

"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." – Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." – Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory




Knots and Primes


Book Description




Quandles and Topological Pairs


Book Description

This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constitutes a crash course for studying quandles.More precisely, this work emphasizes the fresh perspective that quandle theory can be useful for the study of low-dimensional topology (e.g., knot theory) and relative objects with symmetry. The direction of research is summarized as “We shall thoroughly (re)interpret the previous studies of relative symmetry in terms of the quandle”. The perspectives contained herein can be summarized by the following topics. The first is on relative objects G/H, where G and H are groups, e.g., polyhedrons, reflection, and symmetric spaces. Next, central extensions of groups are discussed, e.g., spin structures, K2 groups, and some geometric anomalies. The third topic is a method to study relative information on a 3-dimensional manifold with a boundary, e.g., knot theory, relative cup products, and relative group cohomology.For applications in topology, it is shown that from the perspective that some existing results in topology can be recovered from some quandles, a method is provided to diagrammatically compute some “relative homology”. (Such classes since have been considered to be uncomputable and speculative). Furthermore, the book provides a perspective that unifies some previous studies of quandles.The former part of the book explains motivations for studying quandles and discusses basic properties of quandles. The latter focuses on low-dimensional topology or knot theory. Finally, problems and possibilities for future developments of quandle theory are posed.




Mathematics Of Harmony As A New Interdisciplinary Direction And "Golden" Paradigm Of Modern Science - Volume 2: Algorithmic Measurement Theory, Fibonacci And Golden Arithmetic's And Ternary Mirror-symmetrical Arithmetic


Book Description

Volume II is the second part of the 3-volume book Mathematics of Harmony as a New Interdisciplinary Direction and 'Golden' Paradigm of Modern Science. 'Mathematics of Harmony' rises in its origin to the 'harmonic ideas' of Pythagoras, Plato and Euclid, this 3-volume book aims to promote more deep understanding of ancient conception of the 'Universe Harmony,' the main conception of ancient Greek science, and implementation of this conception to modern science and education.This 3-volume book is a result of the authors' research in the field of Fibonacci numbers and the Golden Section and their applications. It provides a broad introduction to the fascinating and beautiful subject of the 'Mathematics of Harmony,' a new interdisciplinary direction of modern science. This direction has many unexpected applications in contemporary mathematics (a new approach to a history of mathematics, the generalized Fibonacci numbers and the generalized golden proportions, the generalized Binet's formulas), theoretical physics (new hyperbolic models of Nature) and computer science (algorithmic measurement theory, number systems with irrational bases, Fibonacci computers, ternary mirror-symmetrical arithmetic).The books are intended for a wide audience including mathematics teachers of high schools, students of colleges and universities and scientists in the field of mathematics, theoretical physics and computer science. The book may be used as an advanced textbook by graduate students and even ambitious undergraduates in mathematics and computer science.




An Invitation to Knot Theory


Book Description

The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.




Topological Library: Spectral sequences in topology


Book Description

The final volume of the three-volume edition, this book features classical papers on algebraic and differential topology published in 1950-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950. That is, from Serre's celebrated "singular homologies of fiber spaces