Intelligent Algorithms in Ambient and Biomedical Computing


Book Description

This book is the outcome of a series of discussions at the Philips Symposium on Intelligent Algorithms, held in Eindhoven in December 2004. It offers exciting and practical examples of the use of intelligent algorithms in ambient and biomedical computing. It contains topics such as bioscience computing, database design, machine consciousness, scheduling, video summarization, audio classification, semantic reasoning, machine learning, tracking and localization, secure computing, and communication.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models


Book Description

Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models focuses on the relationship between three different multidisciplinary branches of engineering: Biomedical Engineering, Cognitive Science and Computer Science through Artificial Intelligence models. These models will be used to study how the nervous system and musculoskeletal system obey movement orders from the brain, as well as the mental processes of the information during cognition when injuries and neurologic diseases are present in the human body. The interaction between these three areas are studied in this book with the objective of obtaining AI models on injuries and neurologic diseases of the human body, studying diseases of the brain, spine and the nerves that connect them with the musculoskeletal system. There are more than 600 diseases of the nervous system, including brain tumors, epilepsy, Parkinson's disease, stroke, and many others. These diseases affect the human cognitive system that sends orders from the central nervous system (CNS) through the peripheral nervous systems (PNS) to do tasks using the musculoskeletal system. These actions can be detected by many Bioinstruments (Biomedical Instruments) and cognitive device data, allowing us to apply AI using Machine Learning-Deep Learning-Cognitive Computing models through algorithms to analyze, detect, classify, and forecast the process of various illnesses, diseases, and injuries of the human body. Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models provides readers with the study of injuries, illness, and neurological diseases of the human body through Artificial Intelligence using Machine Learning (ML), Deep Learning (DL) and Cognitive Computing (CC) models based on algorithms developed with MATLAB® and IBM Watson®. - Provides an introduction to Cognitive science, cognitive computing and human cognitive relation to help in the solution of AI Biomedical engineering problems - Explain different Artificial Intelligence (AI) including evolutionary algorithms to emulate natural evolution, reinforced learning, Artificial Neural Network (ANN) type and cognitive learning and to obtain many AI models for Biomedical Engineering problems - Includes coverage of the evolution Artificial Intelligence through Machine Learning (ML), Deep Learning (DL), Cognitive Computing (CC) using MATLAB® as a programming language with many add-on MATLAB® toolboxes, and AI based commercial products cloud services as: IBM (Cognitive Computing, IBM Watson®, IBM Watson Studio®, IBM Watson Studio Visual Recognition®), and others - Provides the necessary tools to accelerate obtaining results for the analysis of injuries, illness, and neurologic diseases that can be detected through the static, kinetics and kinematics, and natural body language data and medical imaging techniques applying AI using ML-DL-CC algorithms with the objective of obtaining appropriate conclusions to create solutions that improve the quality of life of patients




Ambient Intelligence - Software and Applications


Book Description

ISAmI is the International Symposium on Ambient Intelligence, and aims to bring together researchers from various disciplines that are interested in all aspects of Ambient Intelligence. The symposium provides a forum to present and discuss the latest results, innovative projects, new ideas and research directions, and to review current trends in this area. This volume presents the papers that have been accepted for the 2011 edition, both for the main event and workshop. The ISAmI workshop WoRIE promises to be a very interesting event that complements the regular program with an emerging topic on reliability of intelligent environments




Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems


Book Description

Technological tools and computational techniques have enhanced the healthcare industry. These advancements have led to significant progress and novel opportunities for biomedical engineering. Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems is a pivotal reference source for emerging scholarly research on trends and techniques in the utilization of nature-inspired approaches in biomedical engineering. Featuring extensive coverage on relevant areas such as artificial intelligence, clinical decision support systems, and swarm intelligence, this publication is an ideal resource for medical practitioners, professionals, students, engineers, and researchers interested in the latest developments in biomedical technologies.




Mathematical Reviews


Book Description




Recent Advances in Ambient Intelligence and Context-Aware Computing


Book Description

Modern devices, from phones and cars to houses and the appliances within them, are being designed with formidable computational power and expanded functionality. To be truly effective, these smart devices must effectively process data from their environment and experiences and make decisions based on that information. Recent Advances in Ambient Intelligence and Context-Aware Computing investigates the functionality of ubiquitous computational systems and how they may adapt to their environment to improve the quality of interaction for the end-user. This reference book will be of value to under- and post-graduate students, professionals, and researchers in networking, computer science, communications, and other information technology disciplines.




Intelligent Fractal-Based Image Analysis


Book Description

Fractals are infinite, complex patterns used in modeling physical and dynamic systems. Fractal theory research has increased across different fields of applications including engineering science, health science, and social science. Recent literature shows the vital role fractals play in digital image analysis, specifically in biomedical image processing. Fractal graphics is an interdisciplinary field that deals with how computers can be used to gain high-level understanding from digital images. Integrating artificial intelligence with fractal characteristics has resulted in new interdisciplinary research in the fields of pattern recognition and image processing analysis. Intelligent Fractal-Based Image Analysis: Application in Pattern Recognition and Machine Vision provides insights into the current strengths and weaknesses of different applications as well as research findings on fractal graphics in engineering and science applications. The book aims to improve the exchange of ideas and coherence between various core computing methods and highlight the relevance of related application areas for advanced as well as novice-user application. The book presents an in-depth look at core concepts, methodological aspects, and advanced feature opportunities, focusing on major real time applications in engineering science and health science. The book will appeal to researchers, data scientists, industry professionals, and graduate students in the fields of fractal graphics and its related applications. - Investigates advanced fractal theories spanning neural networks, fuzzy logic, machine learning, deep learning, and hybrid intelligent systems in solving pattern recognition problems - Explores the application of fractal theories to a wide range of medical image processing modalities - Presents case studies that illustrate the application and integration of fractal theories into intelligent computing in the resolution of important pattern recognition and machine vision problems




ISMIR 2008


Book Description




Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence


Book Description

The two volume set LNCS 13258 and 13259 constitutes the proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022, held in Puerto de la Cruz, Tenerife, Spain in May – June 2022. The total of 121 contributions was carefully reviewed and selected from 203 submissions. The papers are organized in two volumes, with the following topical sub-headings: Part I: Machine Learning in Neuroscience; Neuromotor and Cognitive Disorders; Affective Analysis; Health Applications Part II: Affective Computing in Ambient Intelligence; Bioinspired Computing Approaches; Machine Learning in Computer Vision and Robot; Deep Learning; Artificial Intelligence Applications.