Intelligent Data Engineering and Automated Learning – IDEAL 2019


Book Description

This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI.




Intelligent Data Engineering and Automated Learning – IDEAL 2020


Book Description

This two-volume set of LNCS 12489 and 12490 constitutes the thoroughly refereed conference proceedings of the 21th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2020, held in Guimaraes, Portugal, in November 2020.* The 93 papers presented were carefully reviewed and selected from 134 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2020 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspiredmodels, agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. * The conference was held virtually due to the COVID-19 pandemic.




Intelligent Data Engineering and Automated Learning – IDEAL 2022


Book Description

This book constitutes the refereed proceedings of the 23rd International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2022, which took place in Manchester, UK, during November 24-26, 2022. The 52 full papers included in this book were carefully reviewed and selected from 79 submissions. They deal with emerging and challenging topics in intelligent data analytics and associated machine learning paradigms and systems. Special sessions were held on clustering for interpretable machine learning; machine learning towards smarter multimodal systems; and computational intelligence for computer vision and image processing.




Intelligent Data Engineering and Automated Learning – IDEAL 2021


Book Description

This book constitutes the refereed proceedings of the 22nd International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2021, which took place during November 25-27, 2021. The conference was originally planned to take place in Manchester, UK, but was held virtually due to the COVID-19 pandemic. The 61 full papers included in this book were carefully reviewed and selected from 85 submissions. They deal with emerging and challenging topics in intelligent data analytics and associated machine learning paradigms and systems. Special sessions were held on clustering for interpretable machine learning; machine learning towards smarter multimodal systems; and computational intelligence for computer vision and image processing.




Intelligent Data Engineering and Automated Learning – IDEAL 2023


Book Description

This book constitutes the proceedings of the 24th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2023, held in Évora, Portugal, during November 22–24, 2023. The 45 full papers and 4 short papers presented in this book were carefully reviewed and selected from 77 submissions. IDEAL 2023 is focusing on big data challenges, machine learning, deep learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models, agents and hybrid intelligent systems, and real-world applications of intelligence techniques and AI. The papers are organized in the following topical sections: main track; special session on federated learning and (pre) aggregation in machine learning; special session on intelligent techniques for real-world applications of renewable energy and green transport; and special session on data selection in machine learning.




Intelligent Data Engineering and Automated Learning – IDEAL 2019


Book Description

This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI.




Data Intelligence and Cognitive Informatics


Book Description

This book discusses new cognitive informatics tools, algorithms and methods that mimic the mechanisms of the human brain which lead to an impending revolution in understating a large amount of data generated by various smart applications. The book is a collection of peer-reviewed best selected research papers presented at the International Conference on Data Intelligence and Cognitive Informatics (ICDICI 2020), organized by SCAD College of Engineering and Technology, Tirunelveli, India, during 8–9 July 2020. The book includes novel work in data intelligence domain which combines with the increasing efforts of artificial intelligence, machine learning, deep learning and cognitive science to study and develop a deeper understanding of the information processing systems.




13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020)


Book Description

This book contains accepted papers presented at CISIS 2020 held in the beautiful and historic city of Burgos (Spain), in September 2020. The aim of the CISIS 2020 conference is to offer a meeting opportunity for academic and industry-related researchers belonging to the various, vast communities of computational intelligence, information security, and data mining. The need for intelligent, flexible behaviour by large, complex systems, especially in mission-critical domains, is intended to be the catalyst and the aggregation stimulus for the overall event. After a thorough peer-review process, the CISIS 2020 International Program Committee selected 43 papers which are published in these conference proceedings achieving an acceptance rate of 28%. Due to the COVID-19 outbreak, the CISIS 2020 edition was blended, combining on-site and on-line participation. In this relevant edition, a special emphasis was put on the organization of five special sessions related to relevant topics as Fake News Detection and Prevention, Mathematical Methods and Models in Cybersecurity, Measurements for a Dynamic Cyber-Risk Assessment, Cybersecurity in a Hybrid Quantum World, Anomaly/Intrusion Detection, and From the least to the least: cryptographic and data analytics solutions to fulfil least minimum privilege and endorse least minimum effort in information systems. The selection of papers was extremely rigorous in order to maintain the high quality of the conference and we would like to thank the members of the Program Committees for their hard work in the reviewing process. This is a crucial process to the creation of a high standard conference, and the CISIS conference would not exist without their help.




Time Series Analysis - Recent Advances, New Perspectives and Applications


Book Description

Time series analysis describes, explains, and predicts changes in a phenomenon through time. People have utilized techniques that add a distinctive spatial dimension to this type of analysis. Major applications of spatiotemporal analysis include forecasting epidemics, analyzing the development of traffic conditions in urban networks, and forecasting/backcasting economic risks such as those associated with changing house prices and the occurrence of hazardous events. This book includes contributions from researchers, scholars, and professionals about the most recent theory, models, and applications for interdisciplinary and multidisciplinary research encircling disciplines of computer science, mathematics, statistics, geography, and more in time series analysis and forecasting/backcasting.




Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics


Book Description

Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies.