Intelligent Mobile Robot Navigation


Book Description

Intelligent Mobile Robot Navigation builds upon the application of fuzzy logic to the area of intelligent control of mobile robots. Reactive, planned, and teleoperated techniques are considered, leading to the development of novel fuzzy control systems for perception and navigation of nonholonomic autonomous vehicles. The unique feature of this monograph lies in its comprehensive treatment of the problem, from the theoretical development of the various schemes down to the real-time implementation of algorithms on mobile robot prototypes. As such, the book spans different domains ranging from mobile robots to intelligent transportation systems, from automatic control to artificial intelligence.




Introduction to Autonomous Mobile Robots, second edition


Book Description

The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.




Artificial Intelligence and Mobile Robots


Book Description

The mobile robot systems described in this book were selected from among the best available implementations by leading universities and research laboratories. These are robots that have left the lab and been tested in natural and unknown environments. They perform many different tasks, from giving tours to collecting trash. Many have distinguished themselves (usually with first- or second-place finishes) at various indoor and outdoor mobile robot competitions. Each case study is self-contained and includes detailed descriptions of important algorithms, including pseudo-code. Thus this volume serves as a recipe book for the design of successful mobile robot applications. Common themes include navigation and mapping, computer vision, and architecture. Contributors Ronald Arkin, Tucker Balch, Michael Brady, Don Brutzman, Arno Bucken, R. James Firby, Erann Gat, Tony Healy, Ian Horswill, Housheng Hu, Sven Koenig, Kurt Konolige David Kortenkamp, Dave Marco, Bob McGhee, Robin Murphy, Karen Myers, Illah Nourbakhsh, Peter Prokopowicz, Bill Schiller, Reid Simmons, Michael Swain, Sebastian Thrun




Vision Based Autonomous Robot Navigation


Book Description

This monograph is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book describes successful implementation of integration of low-cost, external peripherals, with off-the-shelf procured robots. An important highlight of the book is that it presents a detailed, step-by-step sample demonstration of how vision-based navigation modules can be actually implemented in real life, under 32-bit Windows environment. The book also discusses the concept of implementing vision based SLAM employing a two camera based system.




Directed Sonar Sensing for Mobile Robot Navigation


Book Description

This monograph is a revised version of the D.Phil. thesis of the first author, submitted in October 1990 to the University of Oxford. This work investigates the problem of mobile robot navigation using sonar. We view model-based navigation as a process of tracking naturally occurring environment features, which we refer to as "targets". Targets that have been predicted from the environment map are tracked to provide that are observed, but not predicted, vehicle position estimates. Targets represent unknown environment features or obstacles, and cause new tracks to be initiated, classified, and ultimately integrated into the map. Chapter 1 presents a brief definition of the problem and a discussion of the basic research issues involved. No attempt is made to survey ex haustively the mobile robot navigation literature-the reader is strongly encouraged to consult other sources. The recent collection edited by Cox and Wilfong [34] is an excellent starting point, as it contains many of the standard works of the field. Also, we assume familiarity with the Kalman filter. There are many well-known texts on the subject; our notation derives from Bar-Shalom and Fortmann [7]. Chapter 2 provides a detailed sonar sensor model. A good sensor model of our approach to navigation, and is used both for is a crucial component predicting expected observations and classifying unexpected observations.




Robot Cognition and Navigation


Book Description

This book presents the concept of cognition in a clear, lucid and highly comprehensive style. It provides an in-depth analysis of mathematical models and algorithms, and demonstrates their application with real life experiments.




Advanced Computing Strategies for Engineering


Book Description

This double volume set ( LNAI 10863-10864) constitutes the refereed proceedings of the 25th International Workshop, EG-ICE 2018, held in Lausanne, Switzerland, in June 2018. The 58 papers presented in this volume were carefully reviewed and selected from 108 submissions. The papers are organized in topical sections on Advanced Computing in Engineering, Computer Supported Construction Management, Life-Cycle Design Support, Monitoring and Control Algorithms in Engineering, and BIM and Engineering Ontologies.




Introduction to Mobile Robot Control


Book Description

Introduction to Mobile Robot Control provides a complete and concise study of modeling, control, and navigation methods for wheeled non-holonomic and omnidirectional mobile robots and manipulators. The book begins with a study of mobile robot drives and corresponding kinematic and dynamic models, and discusses the sensors used in mobile robotics. It then examines a variety of model-based, model-free, and vision-based controllers with unified proof of their stabilization and tracking performance, also addressing the problems of path, motion, and task planning, along with localization and mapping topics. The book provides a host of experimental results, a conceptual overview of systemic and software mobile robot control architectures, and a tour of the use of wheeled mobile robots and manipulators in industry and society. Introduction to Mobile Robot Control is an essential reference, and is also a textbook suitable as a supplement for many university robotics courses. It is accessible to all and can be used as a reference for professionals and researchers in the mobile robotics field. - Clearly and authoritatively presents mobile robot concepts - Richly illustrated throughout with figures and examples - Key concepts demonstrated with a host of experimental and simulation examples - No prior knowledge of the subject is required; each chapter commences with an introduction and background




Principles of Robot Motion


Book Description

A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.




Active Sensors for Local Planning in Mobile Robotics


Book Description

This book describes recent work on active sensors for mobile robots. An active sensor interacts with its surroundings to supply data on demand for a particular function, gathering and abstracting information according to need rather than acting as a generic data gatherer. Details of the physical operation are hidden.The book deals mainly with active range sensors, which provide rapid information for local planning, describing extraction of two-dimensional features such as lines, corners and cylinders to reconstruct a plan of a building. It is structured according to the physical principles of the sensors, since to a large extent these determine the function of the sensors and the methods of processing. Recent work using sonar, optoelectronic sensors and radar is described. Sections on vision and on sensor management develop the idea of software adaptation for efficient operation in a changing environment.