Intelligent Optimization Modelling in Energy Forecasting


Book Description

Accurate energy forecasting is important to facilitate the decision-making process in order to achieve higher efficiency and reliability in power system operation and security, economic energy use, contingency scheduling, the planning and maintenance of energy supply systems, and so on. In recent decades, many energy forecasting models have been continuously proposed to improve forecasting accuracy, including traditional statistical models (e.g., ARIMA, SARIMA, ARMAX, multi-variate regression, exponential smoothing models, Kalman filtering, Bayesian estimation models, etc.) and artificial intelligence models (e.g., artificial neural networks (ANNs), knowledge-based expert systems, evolutionary computation models, support vector regression, etc.). Recently, due to the great development of optimization modeling methods (e.g., quadratic programming method, differential empirical mode method, evolutionary algorithms, meta-heuristic algorithms, etc.) and intelligent computing mechanisms (e.g., quantum computing, chaotic mapping, cloud mapping, seasonal mechanism, etc.), many novel hybrid models or models combined with the above-mentioned intelligent-optimization-based models have also been proposed to achieve satisfactory forecasting accuracy levels. It is important to explore the tendency and development of intelligent-optimization-based modeling methodologies and to enrich their practical performances, particularly for marine renewable energy forecasting.




Practical Examples of Energy Optimization Models


Book Description

This book highlights state-of-the-art research on renewable energy integration technology and suitable and efficient power generation, discussing smart grids, renewable energy grid integration, prediction control models, and econometric models for predicting the global solar radiation and factors that affect solar radiation, performance evaluation of photovoltaic systems, and improved energy consumption prediction models. It discusses several methods, algorithms, environmental data-based performance analyses, and experimental results to help readers gain a detailed understanding of the pros and cons of technologies in this rapidly growing area. Accordingly, it offers a valuable resource for students and researchers working on renewable energy optimization models.







Intelligent Data-Driven Modelling and Optimization in Power and Energy Applications


Book Description

This book provides a comprehensive understanding of how intelligent data-driven techniques can be used for modelling, controlling, and optimizing various power and energy applications. It aims to develop multiple data-driven models for forecasting renewable energy sources and to interpret the benefits of these techniques in line with first-principles modelling approaches. By doing so, the book aims to stimulate deep insights into computational intelligence approaches in data-driven models and to promote their potential applications in the power and energy sectors. Its key features include: an exclusive section on essential preprocessing approaches for the data-driven model a detailed overview of data-driven model applications to power system planning and operational activities specific focus on developing forecasting models for renewable generations such as solar PV and wind power, and showcasing the judicious amalgamation of allied mathematical treatments such as optimization and fractional calculus in data-driven model-based frameworks This book presents novel concepts for applying data-driven models, mainly in the power and energy sectors, and is intended for graduate students, industry professionals, research, and academic personnel.







Exploration of Novel Intelligent Optimization Algorithms


Book Description

This book constitutes the refereed proceedings of the 12th International Symposium, ISICA 2021, held in Guangzhou, China, during November 19–21, 2021. The 48 full papers included in this book were carefully reviewed and selected from 99 submissions. They were organized in topical sections as follows: new frontier of multi-objective evolutionary algorithms; intelligent multi-media; data modeling and application of artificial intelligence; exploration of novel intelligent optimization algorithm; and intelligent application of industrial production.




Intelligent Renewable Energy Systems


Book Description

INTELLIGENT RENEWABLE ENERGY SYSTEMS This collection of papers on artificial intelligence and other methods for improving renewable energy systems, written by industry experts, is a reflection of the state of the art, a must-have for engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current energy systems concepts and technology. Renewable energy is one of the most important subjects being studied, researched, and advanced in today’s world. From a macro level, like the stabilization of the entire world’s economy, to the micro level, like how you are going to heat or cool your home tonight, energy, specifically renewable energy, is on the forefront of the discussion. This book illustrates modelling, simulation, design and control of renewable energy systems employed with recent artificial intelligence (AI) and optimization techniques for performance enhancement. Current renewable energy sources have less power conversion efficiency because of its intermittent and fluctuating behavior. Therefore, in this regard, the recent AI and optimization techniques are able to deal with data ambiguity, noise, imprecision, and nonlinear behavior of renewable energy sources more efficiently compared to classical soft computing techniques. This book provides an extensive analysis of recent state of the art AI and optimization techniques applied to green energy systems. Subsequently, researchers, industry persons, undergraduate and graduate students involved in green energy will greatly benefit from this comprehensive volume, a must-have for any library. Audience Engineers, scientists, managers, researchers, students, and other professionals working in the field of renewable energy.







Computational Collective Intelligence


Book Description

This two-volume set (LNAI 9875 and LNAI 9876) constitutes the refereed proceedings of the 8th International Conference on Collective Intelligence, ICCCI 2016, held in Halkidiki, Greece, in September 2016. The 108 full papers presented were carefully reviewed and selected from 277 submissions. The aim of this conference is to provide an internationally respected forum for scientific research in the computer-based methods of collective intelligence and their applications in (but not limited to) such fields as group decision making, consensus computing, knowledge integration, semantic web, social networks and multi-agent systems.