Intelligent Patient Management


Book Description

Arguably medicine is either an arts-based science or a science-based art. In medieval times, clinical decisions were based on simple measures, such as the temperature of the body, the rhythm of the pulse, the consistency of the stool and the colour of the urine. Nowadays, thanks partly to modern technology, medical science has improved in many ways, as has healthcare. In particular, approaches which have their origins in Artificial Intelligence and Operational Research have a significant contribution to make in terms of improving not only diagnosis and treatment of patients, but also providing ways of managing patients in a more effective, more efficient, and more patient-friendly manner. This book focuses on the use of such Intelligent Patient Management to the benefit of clinicians, other healthcare and community practitioners and managers, patients and carers.




Intelligent Patient Management


Book Description

Healthcare approaches with origins in Artificial Intelligence and Operational Research can greatly improve the diagnosis, treatment and overall care of patients. This book focuses on the use of such Intelligent Patient Management for healthcare professionals.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




You, the Smart Patient


Book Description

A guide to taking charge of one's own health care offers detailed information and advice on hospitals, communicating with doctors, therapeutic options, pain management, and other health care challenges.




Smart Healthcare Systems


Book Description

About the Book The book provides details of applying intelligent mining techniques for extracting and pre-processing medical data from various sources, for application-based healthcare research. Moreover, different datasets are used, thereby exploring real-world case studies related to medical informatics. This book would provide insight to the learners about Machine Learning, Data Analytics, and Sustainable Computing. Salient Features of the Book Exhaustive coverage of Data Analysis using R Real-life healthcare models for: Visually Impaired Disease Diagnosis and Treatment options Applications of Big Data and Deep Learning in Healthcare Drug Discovery Complete guide to learn the knowledge discovery process, build versatile real life healthcare applications Compare and analyze recent healthcare technologies and trends Target Audience This book is mainly targeted at researchers, undergraduate, postgraduate students, academicians, and scholars working in the area of data science and its application to health sciences. Also, the book is beneficial for engineers who are engaged in developing actual healthcare solutions.




Theory and Practice of Business Intelligence in Healthcare


Book Description

Business intelligence supports managers in enterprises to make informed business decisions in various levels and domains such as in healthcare. These technologies can handle large structured and unstructured data (big data) in the healthcare industry. Because of the complex nature of healthcare data and the significant impact of healthcare data analysis, it is important to understand both the theories and practices of business intelligence in healthcare. Theory and Practice of Business Intelligence in Healthcare is a collection of innovative research that introduces data mining, modeling, and analytic techniques to health and healthcare data; articulates the value of big volumes of data to health and healthcare; evaluates business intelligence tools; and explores business intelligence use and applications in healthcare. While highlighting topics including digital health, operations intelligence, and patient empowerment, this book is ideally designed for healthcare professionals, IT consultants, hospital directors, data management staff, data analysts, hospital administrators, executives, managers, academicians, students, and researchers seeking current research on the digitization of health records and health systems integration.




Computational Intelligence in Healthcare


Book Description

Artificial intelligent systems, which offer great improvement in healthcare sector assisted by machine learning, wireless communications, data analytics, cognitive computing, and mobile computing provide more intelligent and convenient solutions and services. With the help of the advanced techniques, now a days it is possible to understand human body and to handle & process the health data anytime and anywhere. It is a smart healthcare system which includes patient, hospital management, doctors, monitoring, diagnosis, decision making modules, disease prevention to meet the challenges and problems arises in healthcare industry. Furthermore, the advanced healthcare systems need to upgrade with new capabilities to provide human with more intelligent and professional healthcare services to further improve the quality of service and user experience. To explore recent advances and disseminate state-of-the-art techniques related to intelligent healthcare services and applications. This edited book involved in designing systems that will permit the societal acceptance of ambient intelligence including signal processing, imaging, computing, instrumentation, artificial intelligence, internet of health things, data analytics, disease detection, telemedicine, and their applications. As the book includes recent trends in research issues and applications, the contents will be beneficial to Professors, researchers, and engineers. This book will provide support and aid to the researchers involved in designing latest advancements in communication and intelligent systems that will permit the societal acceptance of ambient intelligence. This book presents the latest research being conducted on diverse topics in intelligence technologies with the goal of advancing knowledge and applications healthcare sector and to present the latest snapshot of the ongoing research as well as to shed further light on future directions in this space. The aim of publishing the book is to serve for educators, researchers, and developers working in recent advances and upcoming technologies utilizing computational sciences.




Machine Learning and AI for Healthcare


Book Description

Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.




Intelligent Decision Support Systems—A Journey to Smarter Healthcare


Book Description

The goal of this book is to provide, in a friendly and refreshing manner, both theoretical concepts and practical techniques for the important and exciting field of Artificial Intelligence that can be directly applied to real-world healthcare problems. Healthcare – the final frontier. Lately, it seems like Pandora opened the box and evil was released into the world. Fortunately, there was one thing left in the box: hope. In recent decades, hope has been increasingly represented by Intelligent Decision Support Systems. Their continuing mission: to explore strange new diseases, to seek out new treatments and drugs, and to intelligently manage healthcare resources and patients. Hence, this book is designed for all those who wish to learn how to explore, analyze and find new solutions for the most challenging domain of all time: healthcare.




Intelligent Biomedical Technologies and Applications for Healthcare 5.0


Book Description

Intelligent Biomedical Technologies and Applications for Healthcare 5.0, Volume Sixteen covers artificial health intelligence, biomedical image analysis, 5G, the Internet of Medical Things, intelligent healthcare systems, and extended health intelligence (EHI). This volume contains four sections. The focus of the first section is health data analytics and applications. The second section covers research on information exchange and knowledge sharing. The third section is on the Internet of Things (IoT) and the Internet of Everything (IoE)-based solutions. The final section focuses on the implementation, assessment, adoption, and management of healthcare informatics solutions. This new volume in the Advances in Ubiquitous Sensing Applications for Healthcare series focuses on innovative methods in the healthcare industry and will be useful for biomedical engineers, researchers, and students working in interdisciplinary fields of research. This volume bridges these newly developing technologies and the medical community in the rapidly developing healthcare world, introducing them to modern healthcare advances such as EHI and Smart Healthcare Systems. - Provides a comprehensive technological review of cutting-edge information in the wide domain of Healthcare 5.0 - Introduces concepts that combine computational methods, network standards, and healthcare systems to provide a much improved, more affordable experience delivered by healthcare services to its customers - Presents innovative solutions utilizing informatics to deal with various healthcare technology issues