Intelligent Systems and Sustainable Computational Models


Book Description

The fields of intelligent systems and sustainability have been gaining momentum in the research community. They have drawn interest in such research fields as computer science, information technology, electrical engineering, and other associated engineering disciples. The promise of intelligent systems applied to sustainability is becoming a reality due to the recent advancements in the Internet of Things (IoT), Artificial Intelligence, Big Data, blockchain, deep learning, and machine learning. The emergence of intelligent systems has given rise to a wide range of techniques and algorithms using an ensemble approach to implement novel solutions for complex problems associated with sustainability. Intelligent Systems and Sustainable Computational Models: Concepts, Architecture, and Practical Applications explores this ensemble approach towards building a sustainable future. It explores novel solutions for such pressing problems as smart healthcare ecosystems, energy efficient distributed computing, affordable renewable resources, mitigating financial risks, monitoring environmental degradation, and balancing climate conditions. The book helps researchers to apply intelligent systems to computational sustainability models to propose efficient methods, techniques, and tools. The book covers such areas as: Intelligent and adaptive computing for sustainable energy, water, and transportation networks Blockchain for decentralized systems for sustainable applications, systems, and infrastructure IoT for sustainable critical infrastructure Explainable AI (XAI) and decision-making models for computational sustainability Sustainable development using edge computing, fog computing and cloud computing Cognitive intelligent systems for e-learning Artificial Intelligence and machine learning for large scale data Green computing and cyber physical systems Real-time applications in healthcare, agriculture, smart cities, and smart governance. By examining how intelligent systems can build a sustainable society, the book presents systems solutions that can benefit researchers and professionals in such fields as information technology, health, energy, agricultural, manufacturing, and environmental protection.




Computational Intelligence Methods for Green Technology and Sustainable Development


Book Description

This book is a selected collection of 54 peer-reviewed original scientific research papers of the 5th International Conference on Green Technology and Sustainable Development (GTSD2020) organised in Vietnam in 2020. It highlights the importance of sustainability as well as promotes up-to-date innovation and research for green development in technologies, economics and education among countries. The conference provides an international platform for researchers, practitioners, policymakers and entrepreneurs to present their advances, knowledge and experience on various interdisciplinary topics related to the theme of “Green technology and sustainable development in industrial revolution 4.0”. The book is a valuable resource for researchers, analysts, engineers, practitioners and policymakers who are interested in the latest findings in artificial intelligence, cyber systems, robotics, green energy and power systems, mechanical and computational mechanic models and advanced civil engineering. This book has 05 sessions consisting of both theoretical and practical aspects, and numerical and experimental analyses in various engineering disciplines.




Advanced Intelligent Systems for Sustainable Development (AI2SD’2020)


Book Description

This book publishes the best papers accepted and presented at the 3rd edition of the International Conference on Advanced Intelligent Systems for Sustainable Development Applied to Agriculture, Energy, Health, Environment, Industry, Education, Economy, and Security (AI2SD’2020). This conference is one of the biggest amalgamations of eminent researchers, students, and delegates from both academia and industry where the collaborators have an interactive access to emerging technology and approaches globally. In this book, readers find the latest ideas addressing technological issues relevant to all areas of the social and human sciences for sustainable development. Due to the nature of the conference with its focus on innovative ideas and developments, the book provides the ideal scientific and brings together very high-quality chapters written by eminent researchers from different disciplines, to discover the most recent developments in scientific research.




Computational Intelligence for Sustainable Transportation and Mobility


Book Description

New technologies and computing methodologies are now used to address the existing issues of urban traffic systems. The development of computational intelligence methods such as machine learning and deep learning, enables engineers to find innovative solutions to guide traffic in order to reduce transportation and mobility problems in urban areas. This volume, Computational Intelligence for Sustainable Transportation and Mobility, presents several computing models for intelligent transportation systems, which may hold the key to achieving sustainable development goals by optimizing traffic flow and minimizing associated risks. The book begins with the basic computational Intelligence techniques for traffic systems and explains its applications in vehicular traffic prediction, model optimization, behavior analysis, traffic density estimation, and more. The main objectives of this book are to present novel techniques developed, new technologies and computational intelligence for sustainable mobility and transportation solutions, as well as giving an understanding of some Industry 4.0 trends. Readers will learn how to apply computational intelligence techniques such as multiagent systems (MAS), whale optimization, artificial Intelligence (AI), deep neural networks (DNNs) so that they can to develop algorithms, models, and approaches for sustainable transportation operations. Key Features: - Provides an overview of machine learning models and their optimization for intelligent transportation systems in urban areas - Covers classification of traffic behavior - Demonstrates the application of artificial immune system algorithms for traffic prediction - Covers traffic density estimation using deep learning models - Covers Fog and edge computing for intelligent transportation systems - Gives an IoT and Industry 4.0 perspective about intelligent transportation systems to readers - Presents a current perspective on an urban hyperloop system for India




Intelligent Computing Applications for Sustainable Real-World Systems


Book Description

This book delves into various solution paradigms such as artificial neural network, support vector machine, wavelet transforms, evolutionary computing, swarm intelligence. During the last decade, novel solution technologies based on human and species intelligence have gained immense popularity due to their flexible and unconventional approach. New analytical tools are also being developed to handle big data processing and smart decision making. The idea behind compiling this work is to familiarize researchers, academicians, industry persons and students with various applications of intelligent techniques for producing sustainable, cost-effective and robust solutions of frequently encountered complex, real-world problems in engineering and science disciplines. The practical problems in smart grids, communication, waste management, elimination of harmful elements from nature, etc., are identified, and smart and optimal solutions are proposed.




Handbook of Intelligent Computing and Optimization for Sustainable Development


Book Description

HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries. Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. The 41 chapters comprising the Handbook of Intelligent Computing and Optimization for Sustainable Development by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. Audience It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.




Advanced Intelligent Systems for Sustainable Development (AI2SD’2019)


Book Description

This book gathers papers presented at the second installment of the International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD-2019), which was held on July 08–11, 2019 in Marrakech, Morocco. It offers comprehensive coverage of recent advances in big data, data analytics and related paradigms. The book consists of fifty-two chapters, each of which shares the latest research in the fields of big data and data science, and describes use cases and applications of big data technologies in various domains, such as social networks and health care. All parts of the book discuss open research problems and potential opportunities that have arisen from the rapid advances in big data technologies. In addition, the book surveys the state of the art in data science, and provides practical guidance on big data analytics and data science. Expert perspectives are provided by authoritative researchers and practitioners from around the world, who discuss research developments and emerging trends, present case studies on helpful frameworks and innovative methodologies, and suggest best practices for efficient and effective data analytics. Chiefly intended for researchers, IT professionals and graduate students, the book represents a timely contribution to the growing field of big data, which has been recognized as one of the leading emerging technologies that will have a major impact on various fields of science and various aspects of human society over the next several decades. Therefore, the content in this book is an essential tool to help readers understand current developments, and provides them with an extensive overview of the field of big data analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use big data, such as management and finance, medicine and health care, networks, the Internet of Things, big data standards, benchmarking of systems, and others. In addition to a diverse range of applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modeling of high-dimensional data are also covered. The varied collection of topics addressed introduces readers to the richness of the emerging field of big data analytics.




Sustainable Intelligent Systems


Book Description

This book discusses issues related to ICT, intelligent systems, data science, AI, machine learning, sustainable development and overall their impacts on sustainability. It provides an overview of the technologies of future. The book also discusses novel intelligent algorithms and their applications to move from a data-centric world to sustainable world. It includes research paradigms on sustainable development goals and societal impacts. The book provides an overview of cutting-edge techniques toward sustainability and ideas to help researchers who want to understand the challenges and opportunities of using smart management perspective for sustainable society. It serves as a reference to wide ranges of readers from computer science, data analysts, AI technocrats and management researchers.




Computational Intelligent Data Analysis for Sustainable Development


Book Description

Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development present




Intelligent Systems and Sustainable Computing


Book Description

The book is a collection of best selected research papers presented at the International Conference on Intelligent Systems and Sustainable Computing (ICISSC 2021), held in School of Engineering, Malla Reddy University, Hyderabad, India, during 24–25 September 2021. The book covers recent research in intelligent systems, intelligent business systems, soft computing, swarm intelligence, artificial intelligence and neural networks, data mining & data warehousing, cloud computing, distributed computing, big data analytics, Internet of Things (IoT), machine learning, speech processing, sustainable high-performance systems, VLSI and embedded systems, image and video processing, and signal processing and communication.