Analysis and Damping Control of Power System Low-frequency Oscillations


Book Description

This book presents the research and development results on power systems oscillations in three categories of analytical methods. First is damping torque analysis which was proposed in 1960’s, further developed between 1980-1990, and widely used in industry. Second is modal analysis which developed between the 1980’s and 1990’s as the most powerful method. Finally the linearized equal-area criterion analysis that is proposed and developed recently. The book covers three main types of controllers: Power System Stabilizer (PSS), FACTS (Flexible AC Transmission Systems) stabilizer, and ESS (Energy Storage Systems) stabilizer. The book provides a systematic and detailed introduction on the subject as the reference for industry applications and academic research.




Industry 4.0 Vision for the Supply of Energy and Materials


Book Description

Industry 4.0 Vision for the Supply of Energy and Materials Explore the impact of Industry 4.0 technologies on the supply chain with this authoritative text written by a leader in his field In Industry 4.0 Vision for the Supply of Energy and Materials, distinguished researcher and editor, Dr. Mahdi Sharifzadeh, delivers thematic, analytic, and applied discussions of the Industry 4.0 vision for supply chain design and operation. The book compiles all current aspects and emerging notions of Industry 4.0 into clusters of "enablers" and "analytics" of Supply Chain 4.0. Their multifaceted and highly interconnected nature is discussed at length, as are their diverse range of applications. You will discover uses of these new technologies ranging from the supply of conventional energy networks to renewables, pharmaceuticals, and additive manufacturing. You will also learn about their implications for economic prosperity and environmental sustainability. For each sector, this book scrutinizes current industrial practice and discusses developing concepts. Finally, the book concludes with potential future research directions of interest to industry practitioners and academics alike. Readers will also benefit from the inclusion of: A thorough introduction to connectivity through wireless communications and remote sensors An exploration of blockchains and smart contracts, as well as robotics and automation and cloud computing Practical discussions of supply chain analytics, including big data, machine-learning, and artificial intelligence, as well as supply chain modeling, optimization, and control A concise treatment of Industry 4.0 applications in supply chain design and operation, including the circular economy and the power industry An analysis of the oil, gas, and petrochemical industry, the pharmaceutical industry, and additive manufacturing Perfect for PhD-level and Postdoctoral researchers and industrial researchers, Industry 4.0 Vision for the Supply of Energy and Materials will also earn a place in the libraries of working professionals with an interest in the quantitative analysis of Supply Chain 4.0 concepts and techniques.




Electric Energy Systems


Book Description

As demonstrated by recent major blackouts, power grids and their associated markets play a vital role in the operation of our society. Understanding how electric generation, transmission, and delivery systems interact and operate is paramount to guaranteeing reliable sources of electricity. Electric Energy Systems offers highly comprehensive and detailed coverage of power systems operations, uniquely integrating technical and economic analyses. The book fully develops classical subjects such as load flow, short-circuit analysis, and economic dispatch within the context of the new deregulated, competitive electricity markets. With contributions from 24 internationally recognized specialists in power engineering, the text also presents a wide range of advanced topics including harmonic load flow, state estimation, and voltage and frequency control as well as electromagnetic transients, fault analysis, and angle stability. A well-needed and updated extension on classical power systems analysis books, Electric Energy Systems provides an in-depth analysis of the most relevant issues affecting the blood-line of our society, the generation and transmission systems for electric energy.




Variable Frequency Transformers for Large Scale Power Systems Interconnection


Book Description

This book is an all-in-one resource on the development and application of variable frequency transformers to power systems and smart grids. It introduces the main technical issues of variable frequency transformers (VFT) systematically, including its basic construction, theory equations, and simulation models. Readers will then gain an in-depth discussion of its control system, operation performance, low frequency power oscillation, and technical economics, before proceeding to practical implementation and future developments. The related concepts of energy revolution, third generation grids, and power system interconnection are discussed as well. The first, comprehensive introduction to variable frequency transformers (VFT) An in-depth look at the construction of VFT, with simulations and applications Demonstrates how to assess the control system and overall system performance Analyses future developments, energy revolution and power system interconnections Variable Frequency Transformers for Large Scale Power Systems is a timely overview of the state of the art for VFT as it is increasingly adopted in smart grids. It is intended for engineers and researchers specializing in power system planning and operation, as well as advanced students and industry professionals of power engineering.




Power System Dynamics


Book Description

An authoritative guide to the most up-to-date information on power system dynamics The revised third edition of Power System Dynamics and Stability contains a comprehensive, state-of-the-art review of information on the topic. The third edition continues the successful approach of the first and second editions by progressing from simplicity to complexity. It places the emphasis first on understanding the underlying physical principles before proceeding to more complex models and algorithms. The book is illustrated by a large number of diagrams and examples. The third edition of Power System Dynamics and Stability explores the influence of wind farms and virtual power plants, power plants inertia and control strategy on power system stability. The authors—noted experts on the topic—cover a range of new and expanded topics including: Wide-area monitoring and control systems. Improvement of power system stability by optimization of control systems parameters. Impact of renewable energy sources on power system dynamics. The role of power system stability in planning of power system operation and transmission network expansion. Real regulators of synchronous generators and field tests. Selectivity of power system protections at power swings in power system. Criteria for switching operations in transmission networks. Influence of automatic control of a tap changing step-up transformer on the power capability area of the generating unit. Mathematical models of power system components such as HVDC links, wind and photovoltaic power plants. Data of sample (benchmark) test systems. Power System Dynamics: Stability and Control, Third Edition is an essential resource for students of electrical engineering and for practicing engineers and researchers who need the most current information available on the topic.




Voltage Control and Protection in Electrical Power Systems


Book Description

Based on the author’s twenty years of experience, this book shows the practicality of modern, conceptually new, wide area voltage control in transmission and distribution smart grids, in detail. Evidence is given of the great advantages of this approach, as well as what can be gained by new control functionalities which modern technologies now available can provide. The distinction between solutions of wide area voltage regulation (V-WAR) and wide area voltage protection (V-WAP) are presented, demonstrating the proper synergy between them when they operate on the same power system as well as the simplicity and effectiveness of the protection solution in this case. The author provides an overview and detailed descriptions of voltage controls, distinguishing between generalities of underdeveloped, on-field operating applications and modern and available automatic control solutions, which are as yet not sufficiently known or perceived for what they are: practical, high-performance and reliable solutions. At the end of this thorough and complex preliminary analysis the reader sees the true benefits and limitations of more traditional voltage control solutions, and gains an understanding and appreciation of the innovative grid voltage control and protection solutions here proposed; solutions aimed at improving the security, efficiency and quality of electrical power system operation around the globe. Voltage Control and Protection in Electrical Power Systems: from System Components to Wide Area Control will help to show engineers working in electrical power companies and system operators the significant advantages of new control solutions and will also interest academic control researchers studying ways of increasing power system stability and efficiency.




Power System Dynamics and Stability


Book Description

For a one-semester senior or beginning graduate level course in power system dynamics. This text begins with the fundamental laws for basic devices and systems in a mathematical modeling context. It includes systematic derivations of standard synchronous machine models with their fundamental controls. These individual models are interconnected for system analysis and simulation. Singular perturbation is used to derive and explain reduced-order models.




VSC-FACTS-HVDC


Book Description

An authoritative reference on the new generation of VSC-FACTS and VSC-HVDC systems and their applicability within current and future power systems VSC-FACTS-HVDC and PMU: Analysis, Modelling and Simulation in Power Grids provides comprehensive coverage of VSC-FACTS and VSC-HVDC systems within the context of high-voltage Smart Grids modelling and simulation. Readers are presented with an examination of the advanced computer modelling of the VSC-FACTS and VSC-HVDC systems for steady-state, optimal solutions, state estimation and transient stability analyses, including numerous case studies for the reader to gain hands-on experience in the use of models and concepts. Key features: Wide-ranging treatment of the VSC achieved by assessing basic operating principles, topology structures, control algorithms and utility-level applications. Detailed advanced models of VSC-FACTS and VSC-HVDC equipment, suitable for a wide range of power network-wide studies, such as power flows, optimal power flows, state estimation and dynamic simulations. Contains numerous case studies and practical examples, including cases of multi-terminal VSC-HVDC systems. Includes a companion website featuring MATLAB software and Power System Computer Aided Design (PSCAD) scripts which are provided to enable the reader to gain hands-on experience. Detailed coverage of electromagnetic transient studies of VSC-FACTS and VSC-HVDC systems using the de-facto industry standard PSCAD/EMTDC simulation package. An essential guide for utility engineers, academics, and research students as well as industry managers, engineers in equipment design and manufacturing, and consultants.




Control of Flexible Alternating Current Transmission System (FACTS) for Power Stability Enhancement and Power Quality Improvement


Book Description

The thesis will try to summarise the major power system problems and the important role of the FACTS devices to enhance the power system quality. Then, it will give a brief description for various FACTS and Active Filters controllers as mentioned on the existing publications. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together. Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. · Chapter 1: Gives a general description of most power system problems and the basic techniques used to improve the power system quality. It also gives idea about basic objectives from the FACTS devices. · Chapter 2: Offers detailed description for the basic types of FACTS devices and active filters existing in power industry. · Chapter 3: Describes various shunt controllers for control of the Static Compensator (STATCOM) and various series controllers for the control of the Static Synchronous Series Compensator (SSSC) and various Unified Power Flow Controllers (UPFC) as covered in most existing papers. · Chapter 4: Describes the major control schemes for the shunt active filter as covered by most existing papers. · Chapter 5: Describes the major control schemes for the other types of active filters as covered by most existing papers. · Chapter 6: Gives description for optimal control design. · Chapter 7: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.




Transient Stability of Power Systems


Book Description

The market liberalization is expected to affect drastically the operation of power systems, which under economical pressure and increasing amount of transactions are being operated much closer to their limits than previously. These changes put the system operators faced with rather different and much more problematic scenarios than in the past. They have now to calculate available transfer capabilities and manage congestion problems in a near on line environment, while operating the transmission system under extremely stressed conditions. This requires highly reliable and efficient software aids, which today are non-existent, or not yet in use. One of the most problematic issues, very much needed but not yet en countered today, is on-line dynamic security assessment and control, enabling the power system to withstand unexpected contingencies without experienc ing voltage or transient instabilities. This monograph is devoted to a unified approach to transient stability assessment and control, called SIngle Machine Equivalent (S1ME).