From Atom Optics to Quantum Simulation


Book Description

This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.













Probing Correlated Quantum Many-Body Systems at the Single-Particle Level


Book Description

How much knowledge can we gain about a physical system and to what degree can we control it? In quantum optical systems, such as ion traps or neutral atoms in cavities, single particles and their correlations can now be probed in a way that is fundamentally limited only by the laws of quantum mechanics. In contrast, quantum many-body systems pose entirely new challenges due to the enormous number of microscopic parameters and their small length- and short time-scales. This thesis describes a new approach to probing quantum many-body systems at the level of individual particles: Using high-resolution, single-particle-resolved imaging and manipulation of strongly correlated atoms, single atoms can be detected and manipulated due to the large length and time-scales and the precise control of internal degrees of freedom. Such techniques lay stepping stones for the experimental exploration of new quantum many-body phenomena and applications thereof, such as quantum simulation and quantum information, through the design of systems at the microscopic scale and the measurement of previously inaccessible observables.




Equilibrium and Non-equilibrium Properties of Strongly-Interacting Bosons in Optical Lattices


Book Description

This dissertation serves as a summary of my Ph.D. work numerically studying equilibrium and non-equilibrium properties of strongly-interacting one-dimensional (1D) boson systems. This work is motivated by the fact that 1D systems are realizable and highly controllable with ultracold atoms in optical lattice and atom chip experiments. We apply a recent worm algorithmic Monte Carlo approach developed for 1D continuous systems to study their equilibrium properties, both with and without an underlying lattice. We also apply an exact lattice approach based on the Bose-Fermi mapping to check our Monte Carlo results in the Tonks-Girardeau limit, and more importantly, to study far-from-equilibrium expansion dynamics of the systems.We first study the scaling of one-particle correlations of the harmonically trapped Lieb-Liniger gas with changing temperature and interaction strength. Based on the universal behaviors of the density and momentum profiles, we are able to determine the effective parameters needed to fully characterize the system. We also find that the Tonks-Girardeau limit at low temperatures is the ideal regime for the experimental observation of the $1/k^4$ momentum tail. An extra periodic lattice can drive the transition from superfluid to Mott insulator states. Exact and complete phase diagrams for such transitions are available only in the weak interacting and deep lattice limit, in which the system can be described using one-band Bose-Hubbard model. Beyond this limit, we use the worm algorithm in continuous space to map out the phase diagrams at various interaction strengths. We compare our phase diagrams with one-band Bose-Hubbard predictions and identify the regime where the one-band description breaks down. We introduce an inverse confined scattering solution to obtain effective Hubbard parameters, with which the Bose-Hubbard model provides correct results for strong interactions and deep lattices at unit filling.In addition to the equilibrium properties, we also study the expansion dynamics of ultracold atoms in the hard-core limit. Experimentally, this is usually achieved by turning off confining potentials and letting atoms expand in optical lattices. Theoretical studies from initial ground states predicted the occurrence of fermionization of the momentum distribution after long expansion times. In addition, quasicondensation at finite momenta emerges when expanding from Mott insulating domains. Here, we develop a finite-temperature extension of the lattice approach for dynamics. We find the dynamical ferminoization of the momentum distributions at all temperatures. For expansion from initial Mott domains, we observe enhanced correlations reminiscent of dynamical quasicondensation. Surprisingly, we find the systems appear to cool down during the melting of the Mott domains. We use an emergent local Hamiltonian to understand these emergent phenomena.




Ultracold Bosonic and Fermionic Gases


Book Description

The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists Discusses landmark experiments and their fruitful interplay with basic theoretical ideas Comprehensible rather than comprehensive, containing only minimal equations




Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems


Book Description

The physics of strongly correlated fermions and bosons in a disordered envi ronment and confined geometries is at the focus of intense experimental and theoretical research efforts. Advances in material technology and in low temper ature techniques during the last few years led to the discoveries of new physical of atomic gases and a possible metal phenomena including Bose condensation insulator transition in two-dimensional high mobility electron structures. Situ ations were the electronic system is so dominated by interactions that the old concepts of a Fermi liquid do not necessarily make a good starting point are now routinely achieved. This is particularly true in the theory of low dimensional systems such as carbon nanotubes, or in two dimensional electron gases in high mobility devices where the electrons can form a variety of new structures. In many of these sys tems disorder is an unavoidable complication and lead to a host of rich physical phenomena. This has pushed the forefront of fundamental research in condensed matter towards the edge where the interplay between many-body correlations and quantum interference enhanced by disorder has become the key to the understand ing of novel phenomena.




Hubbard Model, The: Recent Results


Book Description

This collection of articles provides authoritative and up-to-date reviews on the Hubbard Model. It will be useful to graduate students and researchers in the field.




Ultracold Atoms in Optical Lattices


Book Description

This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.