Stochastic Interacting Systems: Contact, Voter and Exclusion Processes


Book Description

Interactive particle systems is a branch of probability theory with close connections to mathematical physics and mathematical biology. This book takes three of the most important models in the area, and traces advances in our understanding of them since 1985. It explains and develops many of the most useful techniques in the field.




Interacting Particle Systems


Book Description

At what point in the development of a new field should a book be written about it? This question is seldom easy to answer. In the case of interacting particle systems, important progress continues to be made at a substantial pace. A number of problems which are nearly as old as the subject itself remain open, and new problem areas continue to arise and develop. Thus one might argue that the time is not yet ripe for a book on this subject. On the other hand, this field is now about fifteen years old. Many important of several basic models is problems have been solved and the analysis almost complete. The papers written on this subject number in the hundreds. It has become increasingly difficult for newcomers to master the proliferating literature, and for workers in allied areas to make effective use of it. Thus I have concluded that this is an appropriate time to pause and take stock of the progress made to date. It is my hope that this book will not only provide a useful account of much of this progress, but that it will also help stimulate the future vigorous development of this field.




Interacting Stochastic Systems


Book Description

The Research Network on "Interacting stochastic systems of high complexity" set up by the German Research Foundation aimed at exploring and developing connections between research in infinite-dimensional stochastic analysis, statistical physics, spatial population models from mathematical biology, complex models of financial markets or of stochastic models interacting with other sciences. This book presents a structured collection of papers on the core topics, written at the close of the 6-year programme by the research groups who took part in it. The structure chosen highlights the interweaving of certain themes and certain interconnections discovered through the joint work. This yields a reference work on results and methods that will be useful to all who work between applied probability and the physical, economic, and life sciences.




Complex Stochastic Systems


Book Description

Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference from Graphical Models by Steffen L. Lauritzen explores causal concepts in connection with modelling complex stochastic systems, with focus on the effect of interventions in a given system. State Space and Hidden Markov Models by Hans R. Künschshows the variety of applications of this concept to time series in engineering, biology, finance, and geophysics. Monte Carlo Methods on Genetic Structures by Elizabeth A. Thompson investigates special complex systems and gives a concise introduction to the relevant biological methodology. Renormalization of Interacting Diffusions by Frank den Hollander presents recent results on the large space-time behavior of infinite systems of interacting diffusions. Stein's Method for Epidemic Processes by Gesine Reinert investigates the mean field behavior of a general stochastic epidemic with explicit bounds. Individually, these articles provide authoritative, tutorial-style exposition and recent results from various subjects related to complex stochastic systems. Collectively, they link these separate areas of study to form the first comprehensive overview of this rapidly developing field.




Scaling Limits of Interacting Particle Systems


Book Description

This book has been long awaited in the "interacting particle systems" community. Begun by Claude Kipnis before his untimely death, it was completed by Claudio Landim, his most brilliant student and collaborator. It presents the techniques used in the proof of the hydrodynamic behavior of interacting particle systems.




Stochastic Systems


Book Description

Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners.




Large Scale Dynamics of Interacting Particles


Book Description

This book deals with one of the fundamental problems of nonequilibrium statistical mechanics: the explanation of large-scale dynamics (evolution differential equations) from models of a very large number of interacting particles. This book addresses both researchers and students. Much of the material presented has never been published in book-form before.




Stochastic Transport in Complex Systems


Book Description

The first part of the book provides a pedagogical introduction to the physics of complex systems driven far from equilibrium. In this part we discuss the basic concepts and theoretical techniques which are commonly used to study classical stochastic transport in systems of interacting driven particles. The analytical techniques include mean-field theories, matrix product ansatz, renormalization group, etc. and the numerical methods are mostly based on computer simulations. In the second part of the book these concepts and techniques are applied not only to vehicular traffic but also to transport and traffic-like phenomena in living systems ranging from collective movements of social insects (for example, ants) on trails to intracellular molecular motor transport. These demonstrate the conceptual unity of the fundamental principles underlying the apparent diversity of the systems and the utility of the theoretical toolbox of non-equilibrium statistical mechanics in interdisciplinary research far beyond the traditional disciplinary boundaries of physics. - Leading industry experts provide a broad overview of the interdisciplinary nature of physics - Presents unified descriptions of intracellular, ant, and vehicular traffic from a physics point of view - Applies theoretical methods in practical everyday situations - Reference and guide for physicists, engineers and graduate students




Random Walks, Brownian Motion, and Interacting Particle Systems


Book Description

This collection of articles is dedicated to Frank Spitzer on the occasion of his 65th birthday. The articles, written by a group of his friends, colleagues, former students and coauthors, are intended to demonstrate the major influence Frank has had on probability theory for the last 30 years and most likely will have for many years to come. Frank has always liked new phenomena, clean formulations and elegant proofs. He has created or opened up several research areas and it is not surprising that many people are still working out the consequences of his inventions. By way of introduction we have reprinted some of Frank's seminal articles so that the reader can easily see for himself the point of origin for much of the research presented here. These articles of Frank's deal with properties of Brownian motion, fluctuation theory and potential theory for random walks, and, of course, interacting particle systems. The last area was started by Frank as part of the general resurgence of treating problems of statistical mechanics with rigorous probabilistic tools.




Stochastic Models of Systems


Book Description

In this monograph stochastic models of systems analysis are discussed. It covers many aspects and different stages from the construction of mathematical models of real systems, through mathematical analysis of models based on simplification methods, to the interpretation of real stochastic systems. The stochastic models described here share the property that their evolutionary aspects develop under the influence of random factors. It has been assumed that the evolution takes place in a random medium, i.e. unilateral interaction between the system and the medium. As only Markovian models of random medium are considered in this book, the stochastic models described here are determined by two processes, a switching process describing the evolution of the systems and a switching process describing the changes of the random medium. Audience: This book will be of interest to postgraduate students and researchers whose work involves probability theory, stochastic processes, mathematical systems theory, ordinary differential equations, operator theory, or mathematical modelling and industrial mathematics.