Excitons and Cooper Pairs


Book Description

This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Using an original perspective that the key particles of these materials, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects their macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors begin with a solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange in the absence of fermion-fermion interaction - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or graduate students in physics with no specific background will benefit from this book. The developed concepts and formalism should also be useful for current research on ultracold atomic gases and exciton-polaritons, and quantum information.




Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems


Book Description

The physics of strongly correlated fermions and bosons in a disordered envi ronment and confined geometries is at the focus of intense experimental and theoretical research efforts. Advances in material technology and in low temper ature techniques during the last few years led to the discoveries of new physical of atomic gases and a possible metal phenomena including Bose condensation insulator transition in two-dimensional high mobility electron structures. Situ ations were the electronic system is so dominated by interactions that the old concepts of a Fermi liquid do not necessarily make a good starting point are now routinely achieved. This is particularly true in the theory of low dimensional systems such as carbon nanotubes, or in two dimensional electron gases in high mobility devices where the electrons can form a variety of new structures. In many of these sys tems disorder is an unavoidable complication and lead to a host of rich physical phenomena. This has pushed the forefront of fundamental research in condensed matter towards the edge where the interplay between many-body correlations and quantum interference enhanced by disorder has become the key to the understand ing of novel phenomena.







The IVth International Conference on Quarks and Nuclear Physics


Book Description

The QNP series of international conferences on Quarks and Nuclear Physics is by now a well established and highly respected forum where the most recent developments in the field are discussed and communicated. QNP 2006 is the forth edition of this biennial meeting. Selected and refereed original contributions of QNP 2006 have been published in The European Physical Journal A - Hadrons and Nuclei (EPJ A), while the present proceedings book, in addition to reprinting the articles published in EPJ A, further includes all other contributions selected and accepted by the organizing committee for publication and archiving.







Nuclear Science Abstracts


Book Description

NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.




Quantum Communication and Information Technologies


Book Description

Remarkable recent developments in the field of quantum communications and quantum information processing include the achievement of quantum teleportation, quantum communication channels based on entangled states, and the discovery of quantum computing algorithms. The present book addresses the physical foundations of the subject, as well as the technological problems, discussing such aspects as photonics, quantum imaging, engineered entanglement in atomic and other physical systems, Bose-Einstein condensation, and decoherence. Indispensable reading for graduates and Ph.D. students in departments of physics, electrical and electronic engineering, mathematics, and computer science seeking both an orientation as well as advanced training in the field.




Many-Body Quantum Theory in Condensed Matter Physics


Book Description

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.




The Principles of Quantum Mechanics


Book Description

The first edition of this work appeared in 1930, and its originality won it immediate recognition as a classic of modern physical theory. The fourth edition has been bought out to meet a continued demand. Some improvements have been made, the main one being the complete rewriting of the chapter on quantum electrodymanics, to bring in electron-pair creation. This makes it suitable as an introduction to recent works on quantum field theories.




Laser Cooling and Trapping


Book Description

Intended for advanced undergraduates and beginning graduates with some basic knowledge of optics and quantum mechanics, this text begins with a review of the relevant results of quantum mechanics, before turning to the electromagnetic interactions involved in slowing and trapping atoms and ions, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, from atomic clocks and studies of collision processes, to diffraction and interference of atomic beams at optical lattices and Bose-Einstein condensation.