Interaction of Isotropic Turbulence with a Shock Wave
Author : S. Lee
Publisher :
Page : 242 pages
File Size : 23,82 MB
Release : 1992
Category : Compressibility
ISBN :
Author : S. Lee
Publisher :
Page : 242 pages
File Size : 23,82 MB
Release : 1992
Category : Compressibility
ISBN :
Author : Pierre Sagaut
Publisher : Springer
Page : 912 pages
File Size : 43,2 MB
Release : 2018-03-23
Category : Science
ISBN : 3319731629
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obtained in different research communities. Mathematical tools and advanced physical models are detailed in dedicated chapters.
Author : Akihiro Sasoh
Publisher : Springer
Page : 1188 pages
File Size : 14,25 MB
Release : 2019-03-21
Category : Technology & Engineering
ISBN : 3319910205
This is the first volume of a two volume set which presents the results of the 31st International Symposium on Shock Waves (ISSW31), held in Nagoya, Japan in 2017. It was organized with support from the International Shock Wave Institute (ISWI), Shock Wave Research Society of Japan, School of Engineering of Nagoya University, and other societies, organizations, governments and industry. The ISSW31 focused on the following areas: Blast waves, chemical reacting flows, chemical kinetics, detonation and combustion, ignition, facilities, diagnostics, flow visualization, spectroscopy, numerical methods, shock waves in rarefied flows, shock waves in dense gases, shock waves in liquids, shock waves in solids, impact and compaction, supersonic jet, multiphase flow, plasmas, magnetohyrdrodynamics, propulsion, shock waves in internal flows, pseudo-shock wave and shock train, nozzle flow, re-entry gasdynamics, shock waves in space, Richtmyer-Meshkov instability, shock/boundary layer interaction, shock/vortex interaction, shock wave reflection/interaction, shock wave interaction with dusty media, shock wave interaction with granular media, shock wave interaction with porous media, shock wave interaction with obstacles, supersonic and hypersonic flows, sonic boom, shock wave focusing, safety against shock loading, shock waves for material processing, shock-like phenomena, and shock wave education. These proceedings contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 31 and individuals interested in these fields.
Author : Holger Babinsky
Publisher : Cambridge University Press
Page : 481 pages
File Size : 27,27 MB
Release : 2011-09-12
Category : Technology & Engineering
ISBN : 1139498649
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.
Author : Center for Turbulence Research (U.S.)
Publisher :
Page : 534 pages
File Size : 25,71 MB
Release : 2008
Category : Turbulence
ISBN :
Author : M. Lesieur
Publisher : Cambridge University Press
Page : 240 pages
File Size : 28,43 MB
Release : 2005-08-22
Category : Mathematics
ISBN : 9780521781244
Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.
Author : Daniel Livescu
Publisher : Springer Nature
Page : 273 pages
File Size : 14,72 MB
Release : 2020-02-19
Category : Technology & Engineering
ISBN : 9811526435
This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.
Author : Alexander J. Smits
Publisher : Springer Science & Business Media
Page : 418 pages
File Size : 33,76 MB
Release : 2006-05-11
Category : Science
ISBN : 0387263055
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.
Author : Stanford University. Thermosciences Division. Thermosciences Division
Publisher :
Page : 260 pages
File Size : 33,69 MB
Release : 1992
Category :
ISBN :
Author : Peter Janssen
Publisher : Cambridge University Press
Page : 310 pages
File Size : 15,76 MB
Release : 2004-10-28
Category : Science
ISBN : 0521465400
This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.