Interactions of C, N, P and S Biogeochemical Cycles and Global Change


Book Description

This book is a natural extension of the SCOPE (Scientific Committee of Problems on the Environment) volumes on the carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) biogeochemical cycles and their interactions (Likens, 1981; Bolin and Cook, 1983). Substantial progress in the knowledge of these cycles has been made since publication of those volumes. In particular, the nature and extent of biological and inorganic interactions between these cycles have been identified, positive and negative feedbacks recognized and the relationship between the cycles and global environmental change preliminarily elucidated. In March 1991, a NATO Advanced Research Workshop was held for one week in Melreux, Belgium to reexamine the biogeochemical cycles of C, N, P and S on a variety of time and space scales from a holistic point of view. This book is the result of that workshop. The biogeochemical cycles of C, N, P and S are intimately tied to each other through biological productivity and subsequently to problems of global environmental change. These problems may be the most challenging facing humanity in the 21 st century. In the broadest sense, "global change" encompasses both changes to the status of the large, globally connected atmospheric, oceanic and terrestrial environments (e. g. tropospheric temperature increase) and change occurring as the result of nearly simultaneous local changes in many regions of the world (e. g. eutrophication).




Atmosphere-Biosphere Interactions


Book Description







Ocean Acidification


Book Description

The ocean has absorbed a significant portion of all human-made carbon dioxide emissions. This benefits human society by moderating the rate of climate change, but also causes unprecedented changes to ocean chemistry. Carbon dioxide taken up by the ocean decreases the pH of the water and leads to a suite of chemical changes collectively known as ocean acidification. The long term consequences of ocean acidification are not known, but are expected to result in changes to many ecosystems and the services they provide to society. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean reviews the current state of knowledge, explores gaps in understanding, and identifies several key findings. Like climate change, ocean acidification is a growing global problem that will intensify with continued CO2 emissions and has the potential to change marine ecosystems and affect benefits to society. The federal government has taken positive initial steps by developing a national ocean acidification program, but more information is needed to fully understand and address the threat that ocean acidification may pose to marine ecosystems and the services they provide. In addition, a global observation network of chemical and biological sensors is needed to monitor changes in ocean conditions attributable to acidification.




Biomineralization and Biological Metal Accumulation


Book Description

Biominerals are generated by the subtle interaction of biological organization and mineral growth. They belong both to the living and the inanimate world and as such their genesis is among the most intri guing and fundamental subjects in science. However, the conceptual and technical resources that are available in physical chemistry and in the biological sciences is often inadequate for the elucidation of the pro blems involved, and hence this field is particularly difficult to ex plore. This may be an important reason why fundamental research on bio mineralization mechanisms has traditionally been carried out by a com paratively small group of scientists. There are signs, however, that the situation is ripe for a change. Various meetings on biomineralization have been organized in the last few years, particularly in the medical sector. It is generally felt that further developments in the therapy of bone and tooth diseases will be largely dependent on an improved understanding of the fundamen tal underlying mechanisms of biomineralization.




Biotic Regulation of the Environment


Book Description

It is not possible to understand the apparent stability of the Earth's climate and environment unless we can fully understand how the best possible environmental conditions may be maintained for life to exist. Human colonization of areas with natural biota, for industrial or agricultural activities, will lead to degradation of those natural communities and violation of the BRE (biotic regulation of the environment) principle. Thus to maintain an environment on Earth that is suitable for life it is necessary to preserve and allow the natural recovery of natural biotic communities, both in the oceans and on land. This book is devoted to a quantitative version of the BRE concept, and is built on a foundation of modern scientific knowledge accumulated in the fields of physics and biology.







Freshwater Microplastics


Book Description

This book is open access under a CC BY 4.0 license. This volume focuses on microscopic plastic debris, also referred to as microplastics, which have been detected in aquatic environments around the globe and have accordingly raised serious concerns. The book explores whether microplastics represent emerging contaminants in freshwater systems, an area that remains underrepresented to date. Given the complexity of the issue, the book covers the current state-of-research on microplastics in rivers and lakes, including analytical aspects, environmental concentrations and sources, modelling approaches, interactions with biota, and ecological implications. To provide a broader perspective, the book also discusses lessons learned from nanomaterials and the implications of plastic debris for regulation, politics, economy, and society. In a research field that is rapidly evolving, it offers a solid overview for environmental chemists, engineers, and toxicologists, as well as water managers and policy-makers.




Interactions of Energy and Climate


Book Description

Since the beginning of industrialization in the last century, a steady increase in energy consumption can be observed. At the same time, energy generation switched from wood and coal to predominantly oil, coal and natural gas. Soon, many countries became aware of the fact that the resources of fossil fuels, especially of oil and natural gas are finite. Diversification of energy sources became a requirement for the future. Governments expressed their concern by setting up natural energy programmes while international organisations undertook assessments of the global energy resources and possible rates of supply and substitution. When it comes to setting up energy policies, the following factors must be taken into consideration: population growth, level and nature of socio-economic activity, the costs of energy, the adequacy and reliability of supply, the availability of technology and supporting infrastructure, the success of energy conservation programmes and concern about the environment, safety aspects of production and use of energy as well as educational efforts toward a rational use of energy. When we express our most urgent concern, the long-term global energy provision, experts offer four interrelated partial strategies: - the strategy of rational use and conservation of energy - the strategy of using renewable energy sources - the coal strategy including coal gasification and liquefaction - the nuclear power strategy. Any strategy, however, for securing future energy supply has, from my point of view, to be thoroughly examined as to its impact on the environment.