Interactive Image Processing for Machine Vision


Book Description

Machine vision systems offer great potential in a large number of areas of manufacturing industry and are used principally for Automated Visual Inspection and Robot Vision. This publication presents the state of the art in image processing. It discusses techniques which have been developed for designing machines for use in industrial inspection and robot control, putting the emphasis on software and algorithms. A comprehensive set of image processing subroutines, which together form the basic vocabulary for the versatile image processing language IIPL, is presented. This language has proved to be extremely effective, working as a design tool, in solving numerous practical inspection problems. The merging of this language with Prolog provides an even more powerful facility which retains the benefits of human and machine intelligence. The authors bring together the practical experience and the picture material from a leading industrial research laboratory and the mathematical foundations necessary to understand and apply concepts in image processing. Interactive Image Processing is a self-contained reference book that can also be used in graduate level courses in electrical engineering, computer science and physics.




Processing for Visual Artists


Book Description

Walk with veteran author Andrew Glassner; see exactly how each of his pieces evolves, including the mistakes he's made along the way (and how to fix them!), and the times when he changed direction. As your knowledge and skills grow, you'll understand why Processing is such a powerful tool for self-expression. It offers a 21st-century medium for expressing new ideas. This book gives you everything you need to know to explore new frontiers in your own images, animations, and interactive experiences.




Front-End Vision and Multi-Scale Image Analysis


Book Description

Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.




Techniques for Image Processing and Classifications in Remote Sensing


Book Description

Techniques for Image Processing and Classifications in Remote Sensing provides an introduction to the fundamentals of computer image processing and classification (commonly called ""pattern recognition"" in other applications). The book begins with a discussion of digital scanners and imagery, and two key mathematical concepts for image processing and classification—spatial filtering and statistical pattern recognition. This is followed by separate chapters on image processing and classification techniques that are widely used in the remote sensing community. The emphasis throughout is on techniques that assist in the analysis of images, not particular applications of these techniques. The book also has four appendixes, featuring a bibliography; an introduction to computer binary data representation and image data formats; a discussion of interactive image processing; and a selection of exam questions from the Image Processing Laboratory course at the University of Arizona. This book is intended for use as either a primary source in an introductory image processing course or as a supplementary text in an intermediate-level remote sensing course. The academic level addressed is upper-division undergraduate or beginning graduate, and familiarity with calculus and basic vector and matrix concepts is assumed.




Digital Image Processing Techniques


Book Description

Digital Image Processing Techniques is a state-of-the-art review of digital image processing techniques, with emphasis on the processing approaches and their associated algorithms. A canonical set of image processing problems that represent the class of functions typically required in most image processing applications is presented. Each chapter broadly addresses the problem being considered; the best techniques for this particular problem and how they work; their strengths and limitations; and how the techniques are actually implemented as well as their computational aspects. Comprised of eight chapters, this volume begins with a discussion on processing techniques associated with the following tasks: image enhancement, restoration, detection and estimation, reconstruction, and analysis, along with image data compression and image spectral estimation. The second section describes hardware and software systems for digital image processing. Aspects of commercially available systems that combine both processing and display functions are considered, as are future prospects for their technological and architectural evolution. The specifics of system design trade-offs are explicitly presented in detail. This book will be of interest to students, practitioners, and researchers in various disciplines including digital signal processing, computer science, statistical communications theory, control systems, and applied physics.




Learning Processing


Book Description

Learning Processing, Second Edition, is a friendly start-up guide to Processing, a free, open-source alternative to expensive software and daunting programming languages. Requiring no previous experience, this book is for the true programming beginner. It teaches the basic building blocks of programming needed to create cutting-edge graphics applications including interactive art, live video processing, and data visualization. Step-by-step examples, thorough explanations, hands-on exercises, and sample code, supports your learning curve.A unique lab-style manual, the book gives graphic and web designers, artists, and illustrators of all stripes a jumpstart on working with the Processing programming environment by providing instruction on the basic principles of the language, followed by careful explanations of select advanced techniques. The book has been developed with a supportive learning experience at its core. From algorithms and data mining to rendering and debugging, it teaches object-oriented programming from the ground up within the fascinating context of interactive visual media.This book is ideal for graphic designers and visual artists without programming background who want to learn programming. It will also appeal to students taking college and graduate courses in interactive media or visual computing, and for self-study. - A friendly start-up guide to Processing, a free, open-source alternative to expensive software and daunting programming languages - No previous experience required—this book is for the true programming beginner! - Step-by-step examples, thorough explanations, hands-on exercises, and sample code supports your learning curve




Analysis, Design and Evaluation of Man – Machine Systems


Book Description

Analysis, Design, & Evaluation of Man-Machine Systems presents an examination of the construction and application of a combined network and production systems model. It discusses the computer simulation and experimental results of a fuzzy model of driver behavior. It addresses the ergonomic aspects of working places in control rooms. Some of the topics covered in the book are the control and supervision of the eurelios solar power plant; computer aided control station with coloured display for production control; dynamic and static models for nuclear reactor operators; ironies of automation; and theory and validation of model of the human observer and decision maker. The operation simulation for the evaluation and improvement of a medical information system are fully covered. An in-depth account of an online information retrieval through natural language is provided. The control of input variables by head movements of handicapped persons is completely presented. A chapter is devoted to a graphical hardware description language for logic simulation programs. Another section focuses on the symbiotic, knowledge-based computer support systems. The book can provide useful information to computer programmers, engineers, students, and researchers.




Biosignal and Medical Image Processing


Book Description

Relying heavily on MATLAB® problems and examples, as well as simulated data, this text/reference surveys a vast array of signal and image processing tools for biomedical applications, providing a working knowledge of the technologies addressed while showcasing valuable implementation procedures, common pitfalls, and essential application concepts. The first and only textbook to supply a hands-on tutorial in biomedical signal and image processing, it offers a unique and proven approach to signal processing instruction, unlike any other competing source on the topic. The text is accompanied by a CD with support data files and software including all MATLAB examples and figures found in the text.




Image Processing and Analysis with Graphs


Book Description

Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.




Real-Time Medical Image Processing


Book Description

In order to rea1ize real-time medica1 imaging systems, such as are used for computed tomography, automated miscroscopy, dynamic radioisotope imaging, etc., special techno1ogy is required. The high-speed image sour ce must be successfu11y married with the u1tra high-speed computer. Usua11y the ordinary genera1-purpose computer is found to be inadequate to the image generation and/or image pro cessing task. The ordinary computer executes instructions at be tween 1 and 10 million per second. Speed has improved by only about a factor of 10 during the past 20 years. In contrast a typical com puter used in recognizing blood cell images at 10,000 per hour must execute instructions at between 1 billion and 10 billion per second. Simi1ar execution rates are required to construct a computed tomogra phy image in real-time (1 to 10 seconds). For the reasons given above, engineering development in image generation and processing in the field of biomedicine has become a discipline unto itself; a discipline wherein the computer engineer is driven to design extremely high-speed machines that far surpass the ordinary computer and the x-ray, radioisotope, or microscope scanner designer must also produce equipment whose specifications extend far beyond the state-of-the-art."