Intercalation Compounds for Energy Conversion and Storage Devices


Book Description

The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Intercalation Compounds for Energy Conversion and Storage Devices¿ held during the PRiME 2008 joint international meeting of The Electrochemical Society and The Electrochemical Society of Japan, with the technical cosponsorship of the Japan Society of Applied Physics, the Korean Electrochemical Society, the Electrochemistry Division of the Royal Australian Chemical Institute, and the Chinese Society of Electrochemistry. This meeting was held in Honolulu, Hawaii, from October 12 to 17, 2008.




Energy Storage and Conversion Materials


Book Description

This book explores the fundamental properties of a wide range of energy storage and conversion materials, covering mainstream theoretical and experimental studies and their applications in green energy. It presents a thorough investigation of diverse physical, chemical, and material properties of rechargeable batteries, supercapacitors, solar cells, and fuel cells, covering the development of theoretical simulations, machine learning, high-resolution experimental measurements, and excellent device performance. Covers potential energy storage (rechargeable batteries and supercapacitors) and energy conversion (solar cells and fuel cells) materials Develops theoretical predictions and experimental observations under a unified quasi-particle framework Illustrates up-to-date calculation results and experimental measurements Describes successful synthesis, fabrication, and measurements, as well as potential applications and near-future challenges Promoting a deep understanding of basic science, application engineering, and commercial products, this work is appropriate for senior graduate students and researchers in materials, chemical, and energy engineering and related disciplines.




Intercalation Compounds for Energy Conversion and Storage


Book Description

The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Intercalation Compounds for Energy Conversion and Storage¿, held during the 217th meeting of The Electrochemical Society, in Vancouver, Canada, from April 25 to 30, 2010.




Materials for Energy Conversion and Storage


Book Description

Development of new energy‐related materials is essential in addressing future energy demands. Materials for Energy Conversion and Storage focuses on the materials science related to energy conversion and energy storage technologies. It covers the principles of prospective energy technologies and their relationship to the performance of energy devices. • Covers fundamental principles of energy conversion and storage • Discusses materials selection, design, and performance tradeoffs • Details electrochemical cell construction and testing methodologies • Explores sustainable development of energy devices • Features case studies Aimed at readers in materials, electrical, and energy engineering, this book provides readers with a deep understanding of the role of materials in developing sustainable energy devices.




Fluorinated Materials for Energy Conversion


Book Description

Fluorinated Materials for Energy Conversion offers advanced information on the application of fluorine chemistry to energy conversion materials for lithium batteries, fuel cells, solar cells and so on. Fluorine compounds and fluorination techniques have recently gained important roles in improving the electrochemical characteristics of such energy production devices. The book therefore focuses on new batteries with high performance, the improvements of cell performance and the improvement of electrode and cell characteristics. The authors present new information on the effect of fluorine and how to make use of fluorination techniques and fluorine compounds. With emphasis on recent developments, this book is suitable for students, researchers and engineers working in chemistry, materials science and electrical engineering. Contains practical information, supported by examples Provides an update on recent developments in the field Written by specialists working in fluorine chemistry, electrochemistry, polymer and solid state chemistry




Materials for Energy Conversion Devices


Book Description

As the finite capacity and pollution problems of fossil fuels grow more pressing, new sources of more sustainable energy are being developed. Materials for energy conversion devices summarises the key research on new materials which can be used to generate clean and renewable energy or to help manage problems from existing energy sources. The book discusses the range of materials that can be used to harness and convert solar energy in particular, including the properties of oxide materials and their use in producing hydrogen fuel. It covers thermoelectric materials and devices for power generation, ionic conductors and new types of fuel cell. There are also chapters on the use of such materials in the immobilisation of nuclear waste and as electrochemical gas sensors for emission control. With its distinguished editors and international team of contributors, Materials for energy conversion devices is a standard reference for all those researching and developing a new generation of materials and technologies for our energy need. Detailed coverage of solar energy and thermoelectric conversion Comprehensive survey of new developments in this exciting field Edited by leading experts in the field with contributions from an international team of authors




Advanced Fluoride-Based Materials for Energy Conversion


Book Description

Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference for the chemist, researcher, technician, or academic, presenting valuable, current insights into the synthesis of fluorine compounds and fluorination reactions using fluorinating agents. Provides thorough and applied information on new fluorinated materials for chemical energy devices Describes the emerging role of stable energy devices with high-level functions and the research surrounding the technology Ideal for the chemist, research, technician, or academic seeking current insights into the synthesis of fluorine compounds and fluorination reactions using fluorinating agents




Advanced Materials for Energy Conversion II


Book Description

This volume explores research related to energy conversion devices and related fundamental mechanisms, particularly in the field of fuel cell research, hydrogen storage, and superconductors.







Materials in Energy Conversion, Harvesting, and Storage


Book Description

First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today’s energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.