Interdisciplinary Engineering Sciences


Book Description

Interdisciplinary Engineering Sciences introduces and emphasizes the importance of the interdisciplinary nature of education and research from a materials science perspective. This approach is aimed to promote understanding of the physical, chemical, biological and engineering aspects of any materials science problem. Contents are prepared to maintain the strong background of fundamental engineering disciplines while integrating them with the disciplines of natural science. It presents key concepts and includes case studies on biomedical materials and renewable energy. Aimed at senior undergraduate and graduate students in materials science and other streams of engineering, this book Explores interdisciplinary research aspects in a coherent manner for materials science researchers Presents key concepts of engineering sciences as relevant for materials science in terms of fundamentals and applications Discusses engineering mechanics, biological and physical sciences Includes relevant case studies and examples







Advances in Interdisciplinary Engineering


Book Description

This book comprises the select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME) 2020. This volume focuses on several emerging interdisciplinary areas involving mechanical engineering. Some of the topics covered include automobile engineering, mechatronics, applied mechanics, structural mechanics, hydraulic mechanics, human vibration, biomechanics, biomedical Instrumentation, ergonomics, biodynamic modeling, nuclear engineering, and agriculture engineering. The contents of this book will be useful for students, researchers as well as professionals interested in interdisciplinary topics of mechanical engineering.




Facilitating Interdisciplinary Research


Book Description

Facilitating Interdisciplinary Research examines current interdisciplinary research efforts and recommends ways to stimulate and support such research. Advances in science and engineering increasingly require the collaboration of scholars from various fields. This shift is driven by the need to address complex problems that cut across traditional disciplines, and the capacity of new technologies to both transform existing disciplines and generate new ones. At the same time, however, interdisciplinary research can be impeded by policies on hiring, promotion, tenure, proposal review, and resource allocation that favor traditional disciplines. This report identifies steps that researchers, teachers, students, institutions, funding organizations, and disciplinary societies can take to more effectively conduct, facilitate, and evaluate interdisciplinary research programs and projects. Throughout the report key concepts are illustrated with case studies and results of the committee's surveys of individual researchers and university provosts.




Chemical Science and Engineering Technology


Book Description

One of the major areas of emphasis in the field of in chemical science and engineering technology in recent years has been interdisciplinary research, a trend that promises new insights and innovations rooted in cross-disciplinary collaboration. This volume is designed for stepping beyond traditional disciplinary boundaries and applying knowledge and insights from multiple fields. This book, Chemical Science and Engineering Technology: Perspectives on Interdisciplinary Research, provides a selection of chapters on interdisciplinary research in chemical science and engineering technology, taking a conceptual, and practical approach. The book includes case studies and supporting technologies and also explains the conceptual thinking behind current uses and potential uses not yet implemented. International experts with countless years of experience lend this volume credibility.




Introduction to Systems Thinking and Interdisciplinary Engineering


Book Description

​This concise textbook introduces a systems approach to technology, describing tribological, mechatronic, cyber-physical systems, and the technologic concept of Industry 4.0 to students in a range of engineering domains. “Technology” in this book refers to the totality of human-made, benefit-oriented products, based on engineered combinations of material, energy and information. Dr. Czichos examines technology in this volume in the context of systems thinking with regard to the following main technology areas Technical systems with “interacting surfaces in relative motion” especially in mechanical engineering, production, and transport; including the analysis of friction-induced energy losses and wear-induced materials dissipation. Technical systems that require a combination of mechanics, electronics, controls, and computer engineering for needs of industry and society. Technical systems with a combination of mechatronics and internet communication. Cyber-physical Systems for the digitalization of Industry in the development project Industry 4.0. Considers technology as combination of the physical world and the digital virtual world of information and communication. Describes the product cycle of technical systems and the corner stones of technology: material, energy and information. Presents a holistic view of technology and engineering.







Strategic Software Engineering


Book Description

The pervasiveness of software in business makes it crucial that software engineers and developers understand how software development impacts an entire organization. Strategic Software Engineering: An Interdisciplinary Approach presents software engineering as a strategic, business-oriented, interdisciplinary endeavor, rather than simply a technica




The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education


Book Description

In the United States, broad study in an array of different disciplines â€"arts, humanities, science, mathematics, engineeringâ€" as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century. Researchers in all academic disciplines have been able to delve more deeply into their areas of expertise, grappling with ever more specialized and fundamental problems. Yet today, many leaders, scholars, parents, and students are asking whether higher education has moved too far from its integrative tradition towards an approach heavily rooted in disciplinary "silos". These "silos" represent what many see as an artificial separation of academic disciplines. This study reflects a growing concern that the approach to higher education that favors disciplinary specialization is poorly calibrated to the challenges and opportunities of our time. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics, and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students. It explores evidence regarding the value of integrating more STEMM curricula and labs into the academic programs of students majoring in the humanities and arts and evidence regarding the value of integrating curricula and experiences in the arts and humanities into college and university STEMM education programs.




Integrated Design Engineering


Book Description

This book addresses Integrated Design Engineering (IDE), which represents a further development of Integrated Product Development (IPD) into an interdisciplinary model for both a human-centred and holistic product development. The book covers the systematic use of integrated, interdisciplinary, holistic and computer-aided strategies, methods and tools for the development of products and services, taking into account the entire product lifecycle. Being applicable to various kinds of products (manufactured, software, services, etc.), it helps readers to approach product development in a synthesised and integrated way. The book explains the basic principles of IDE and its practical application. IDE’s usefulness has been demonstrated in case studies on actual industrial projects carried out by all book authors. A neutral methodology is supplied that allows the reader to choose the appropriate working practices and performance assessment techniques to develop their product quickly and efficiently. Given its manifold topics, the book offers a valuable reference guide for students in engineering, industrial design, economics and computer science, product developers and managers in industry, as well as industrial engineers and technicians.