Interfacial Fluid Dynamics and Transport Processes


Book Description

The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by demands for many applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.




Interfacial Fluid Dynamics and Transport Processes


Book Description

The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by demands for many applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.




Computational Modeling for Fluid Flow and Interfacial Transport


Book Description

Practical applications and examples highlight this treatment of computational modeling for handling complex flowfields. A reference for researchers and graduate students of many different backgrounds, it also functions as a text for learning essential computation elements. Drawing upon his own research, the author addresses both macroscopic and microscopic features. He begins his three-part treatment with a survey of the basic concepts of finite difference schemes for solving parabolic, elliptic, and hyperbolic partial differential equations. The second part concerns issues related to computational modeling for fluid flow and transport phenomena. In addition to a focus on pressure-based methods, this section also discusses practical engineering applications. The third and final part explores the transport processes involving interfacial dynamics, particularly those influenced by phase change, gravity, and capillarity. Case studies, employing previously discussed methods, demonstrate the interplay between the fluid and thermal transport at macroscopic scales and their interaction with the interfacial transport.




Interfacial Fluid Dynamics and Transport Processes


Book Description

The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by demands for many applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.




Transport Processes at Fluidic Interfaces


Book Description

There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplinary research approach combining Applied Analysis, Numerical Mathematics, Interface Physics and Chemistry, as well as relevant research areas in the Engineering Sciences. The contributions originated from the joint interdisciplinary research projects in the DFG Priority Programme SPP 1506 “Transport Processes at Fluidic Interfaces.”




Advanced Transport Phenomena


Book Description

Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.




Thermo-fluid Dynamics of Two-Phase Flow


Book Description

This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.




Characterization, Modeling, Monitoring, and Remediation of Fractured Rock


Book Description

Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.




Hydrodynamics and Transport Processes of Inverse Bubbly Flow


Book Description

Hydrodynamics and Transport Processes of Inverse Bubbly Flow provides the science and fundamentals behind hydrodynamic characteristics, including flow regimes, gas entrainment, pressure drop, holdup and mixing characteristics, bubble size distribution, and the interfacial area of inverse bubble flow regimes. Special attention is given to mass and heat transfer. This book is an indispensable reference for researchers in academia and industry working in chemical and biochemical engineering. Hydrodynamics and Transport Processes of Inverse Bubbly Flow helps facilitate a better understanding of the phenomena of multiphase flow systems as used in chemical and biochemical industries. - A first book in the market dedicated to the hydrodynamics of inverse bubbly flows - Includes fundamentals of conventional and inverse bubble columns for different hydrodynamic parameters - Includes recommendations for future applications of bubble flows




Interfacial Transport Processes and Rheology


Book Description

This textbook is designed to provide the theory, methods of measurement, and principal applications of the expanding field of interfacial hydrodynamics. It is intended to serve the research needs of both academic and industrial scientists, including chemical or mechanical engineers, material and surface scientists, physical chemists, chemical and biophysicists, rheologists, physiochemical hydrodynamicists, and applied mathematicians (especially those with interests in viscous fluid mechanics and continuum mechanics).As a textbook it provides materials for a one- or two-semester graduate-level course in interfacial transport processes. It may also be noted that, while separate practical and theoretical subdivisions of material have been introduced, a kind of cross-emphasis is often stressed: (i) to the academic scientist, or the importance of understanding major applications of interfacial transport; and (ii) to the industrial scientist, of the importance of understanding the underlying theory.