Interfacial Stability and Degradation in Organic Photovoltaic Solar Cells


Book Description

Organic photovoltaic (OPV) solar cells show great promise but suffer from short operating lifetimes. This study examines the role that the selection of materials for the hole extraction interface in inverted OPV devices plays in determining the lifetime of a device. In the first part of the study, the effects of thermal degradation were examined. It was found that devices containing MoO3 HTLs and silver top electrodes exhibit an open-circuit voltage (VOC)/fill factor (FF)-driven mechanism. Physical characterisation experiments showed that, with heating, the silver electrode undergoes de-wetting. With thin electrodes this can result in the catastrophic failure of the device. A fracture analysis study found that silver-containing devices experience an increase in adhesion of their top layers to the active layer due to interdiffusion between the layers. This interdiffusion may be related to the loss of VOC and FF in Ag/MoO3 devices through diffused species forming charge traps in the active layer. In the second part of the study, the effects of photodegradation in different atmospheres were studied. Some material-dependent effects were observed when the devices were aged in an inert atmosphere, including variations in projected lifetime. The effect of oxygen was to greatly accelerate degradation, and remove any of the material-dependence observed in the inert experiment, while humidity led to a substantial increase in the degradation rate of devices containing PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate). This study underlines the importance of considering device lifetime in device design, and choosing materials to minimise degradation.




Stability and Degradation of Organic and Polymer Solar Cells


Book Description

Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing measures for extending the duration of operation. Topics covered include: *Chemical and physical probes for studying degradation *Imaging techniques *Photochemical stability of OPV materials *Degradation mechanisms *Testing methods *Barrier technology and applications Stability and Degradation of Organic and Polymer Solar Cells is an essential reference source for researchers in academia and industry, engineers and manufacturers working on OPV design, development and implementation.




Organic Solar Cells


Book Description

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.




Organic Solar Cells


Book Description

Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.




Organic Solar Cells


Book Description

This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.




Factors Affecting Charge Collection and Photo-Stability of Organic Solar Cells


Book Description

Organic photovoltaics employ small molecules or polymers as their primary light absorbing materials and thus differ strongly from traditional silicon-based photovoltaics. Their primary technological benefit is a significant reduction in materials and module fabrication costs. While research on organic solar cells (OSCs) has increased dramatically in the past decade, both OSC efficiencies and device lifetimes must be improved before they can compete with existing second generation photovoltaic technologies. Many of the gains in OSC efficiency to date can be attributed to the vast and concurrent trial-and-error experiments on new donor materials and processing techniques to form traditional bulk heterojunction structures. The field is consequently lacking in predictive power, and many stipulations regarding ideal device architectures and optimal interfacial layers remain ambiguous. Furthermore, OSC lifetime is much less studied in literature compared to OSC efficiency, and fundamental studies identifying the primary mode of degradation observed in OSCs under standard operation are lacking. It is thus beneficial to systematically study charge transport and charge extraction in modern OSCs, especially as these phenomena vary over the lifetime of the OSC. This thesis comprehensively examines charge collection in OSCs as a function of OSC device architecture. To maintain a coherent test platform, vacuum-deposited OSCs are fabricated with various metal phthalocyanine donor materials and a fullerene acceptor. This is in contrast to the solution-processed OSCs that have been the focus of most OSC research since 2005. By removing complications in solution coating (especially film formation and phase separation considerations), it is significantly more straightforward to study photo-physics and charge collection behaviour. In this regard, the role of interfacial layers in charge extraction is investigated, the optimal combination/proportion of neat or mixed donor and acceptor layers in terms of the photo-active materials' properties is studied, and the impact of adding a third component to the mixed layer (i.e. ternary OSCs) is elucidated. The culmination of this work illuminates limitations in charge collection, especially in terms of the distribution of donor and acceptor material in the OSC (both in the bulk mixed layers and with regard to vertical distribution), as well as with variations made at the organic/electrode interface. The results provide guidelines to overcome device performance limitations that are pertinent for future research in both vacuum-deposited and solution-coated OSCs. Having established a strong understanding of device performance in terms of device architecture, the variations in OSC performance and associated charge collection processes are studied as they change with time and under various stress conditions (e.g. light, heat, electrical). To this end, the most critical avenues toward hindered charge collection during the operation (light exposure) of OSCs are identified. To widen the impact and applicability of this research, a systematic study on degradation phenomena for both solution-coated polymer OSCs as well as vacuum-deposited small molecule OSCs is performed. Photo-degradation phenomena in terms of the OSC device architecture are also examined. It is shown that photo-induced degradation of the organic-electrode interface is the dominant degradation mechanism in all OSCs regardless of fabrication methodology, and that the prudent selection of interfacial layers can minimize these effects. A stronger understanding of charge collection processes in as-made and photo-degraded OSCs ultimately allows for intelligent device design to grant stable and highly efficient OSCs.




Organic and Hybrid Solar Cells


Book Description

This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.




The Impact of Interfaces on the Performance of Organic Photovoltaic Cells


Book Description

Organic photovoltaic is an attractive technology to solve future energy supply scenarios. To further increase the potential of this technology novel absorber materials and interface materials have to be developed. In this work the paramount importance of interface materials for efficient as well as stable organic photovoltaic cells and modules is demonstrated. The general requirements of interface materials are elaborated and properties of a novel interface material which meets the demands are investigated experimentally and by simulations.







Organic Solar Cells


Book Description

Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.