Interfacial Supramolecular Assemblies


Book Description

Describes the supramolecular properties of molecular assemblies that contain a solid phase, offering an integrated approach to measurement and addressibility. * Offers an integrated approach to measurement and addressibility. * Features case studies describing the major devices developed using this technology. * The prospects for the future of interfacial supramolecular assemblies are considered.




Interfacial Supramolecular Assemblies


Book Description

Describes the supramolecular properties of molecular assemblies that contain a solid phase, offering an integrated approach to measurement and addressibility. * Offers an integrated approach to measurement and addressibility. * Features case studies describing the major devices developed using this technology. * The prospects for the future of interfacial supramolecular assemblies are considered.




Supramolecular Protein Chemistry


Book Description

Building on decades of “host-guest” research, recent years have seen a surge of activity in water-soluble supramolecular receptors for protein recognition and assembly. Progress has been particularly rich in the area of calixarenes, cucurbiturils and molecular tweezers. Emerging applications include controlled protein assembly in solution, crystal engineering, supramolecular control of catalysis (both in vitro and in vivo), as well as novel mechanisms of protein-interaction inhibition with relevance to amyloids and disease. One challenge at the interface of supramolecular chemistry and protein science is to increase interaction and collaboration between chemists and biochemists/structural biologists.This book addresses the exciting interface of supramolecular chemistry and protein science. Chapters cover supramolecular approaches to protein recognition, assembly and regulation. Principles outlined will highlight the opportunities that are readily accessible to collaborating chemists and biochemists, enriching the breadth and scope of this multidisciplinary field. Supramolecular Protein Chemistry will be of particular interest to graduate students and researchers working in supramolecular chemistry, protein science, self-assembly, biomaterials, biomedicine and biotechnology.




Chirality in Supramolecular Assemblies


Book Description

Supramolecular chemistry deals with the organisation of molecules into defined assemblies using non-covalent interactions, including weaker and reversible interactions such as hydrogen bonds, and metal-ligand interactions. The aspect of stereochemistry within such chemical architectures, and in particular chirality, is of special interest as it impacts on considerations of molecular recognition, the development of functional materials, the vexed question of homochirality, nanoscale effects of interactions at interfaces, biocatalysis and enzymatic catalysis, and applications in organic synthesis. Chirality in Supramolecular Assemblies addresses many of these aspects, presenting a broad overview of this important and rapidly developing interdisciplinary field. Topics covered include: Origins of molecular and topological chirality Homochirogenesis Chirality in crystallinity Host-guest behavior Chiral influences in functional materials Chirality in network solids and coordination solids Aspects of chirality at interfaces Chirality in organic assemblies Chirality related to biocatalysis and enzymes in organic synthesis. This book is a valuable reference for researchers in the molecular sciences, materials science and biological science working with chiral supramolecular systems. It provides summaries and special insights by acknowledged international experts in the various fields.




Encyclopedia of Interfacial Chemistry


Book Description

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions




Supramolecular Organometallic Chemistry


Book Description

Supramolecular chemistry has become not only a major field of chemistry, but is also a vivid interface between chemistry, biology, physics, and materials science. Although still a relatively young field, termini such as molecular recognition, host-guest chemistry, or self-assembly are now common knowledge even for chemistry students, and research has already been honored with a Nobel Prize. This first book on supramolecular organometallic chemistry combines two areas in chemistry that are experiencing the fastest developments. It provides a comprehensive review of various organometallic assemblies, arranged according to the types of intermolecular bonding. Details on the synthesis, structures, and properties of these compounds will be a valuable asset to the scientific community. The broad spectrum of assemblies containing main group element, transition metal, or f-element metal and a diverse range of ligands, held together by different bonding interactions make this a fascinating compilation. Illustrated extensively, this book is a very easily accessible, yet wide-ranging source of information.




Forces, Growth and Form in Soft Condensed Matter: At the Interface between Physics and Biology


Book Description

This volume comprises the proceedings of a NATO Advanced Study Institute held at Geilo, Norway, 24 March - 3 April 2003, the seventeenth ASI in a series held every two years since 1971. The objective of this ASI was to identify and discuss areas where synergism between modern physics, soft condensed matter and biology might be most fruitful. The main pedagogical approach was to have lecturers focussing on basic understanding of important aspects of the relative role of the various interaction- electrostatic, hydrophobic, steric, conformational, van der Waals etc. Soft condensed matter and the connection between physics and biology have been the themes of several earlier Geilo Schools. A return to these subjects thus allowed a fresh look and a possibility for defining new directions for research. Examples of soft materials, which were discussed at this ASI, included colloidal dispersions, gels, biopolymers and charged polymer solutions, polyelectrolytes, protein/membrane complexes, nucleic acids and their complexes. Indeed, most forms of condensed matter are soft and these substances are composed of aggregates and macromolecules, with interactions that are too weak and complex to form crystals spontaneously. A characteristic feature is that small external forces, slight perturbations in temperature, pressure or concentration, can all be enough to induce significant structural changes. Thermal fluctuations are almost by definition strong in soft materials and entropy is a predominant determinant of structure, so that disorder, slow dynamics and plastic deformation are the rule. Hence the phrase ‘soft condensed matter’ has been coined.




Nanomaterials


Book Description

The book "Nanomaterials" includes all aspects of metal-oxide nano-structures, nano-composites, and polymer materials instigating with materials survey and preparations, growth and characterizations, processing and fabrications, developments and potential applications. These topics have utilized innovative methods of preparation, improvement, and continuous changes in multidimensional ways. The innovative frontiers are branching out from time to time to advanced nanotechnology. It is an important booklet for scientific organizations, governmental research-centers, academic libraries, and the overall research and development of nano-materials in general. It has been created for widespread audience with diverse backgrounds and education.




Molecular Interfacial Phenomena of Polymers and Biopolymers


Book Description

One of the most exciting areas of polymer research is the study of interfacial phenomena and their practical applications. This major work reviews the key research in this important area and is used in such areas as biomaterials.Part one looks at the thermodynamics, kinetics and other fundamental properties of polymer surfaces and interfaces. The second part of the book reviews ways of characterising and manipulating interfacial phenomena. It includes examples of practical applications such as vaccine delivery, tissue engineering and the development of therapeutic lung surfactants.With its distinguished editor and international team of contributors, Molecular interfacial phenomena of polymers and biopolymers is a standard work on understanding polymeric interfacial properties and their medical and other practical applications. - Reviews key research in this hot area including biomaterials - Examines polymeric interfacial properties and reviews medical and other practical applications - Edited by a leading authority with contributions from distinguished experts worldwide




Single Molecule Mechanics on a Surface


Book Description

Written by the leading experts of this field, this book results from the International Symposium on “Single Molecule Machines on a Surface: Gears, Train of Gears, Motors, and Cars” which took place in Toulouse, France on November 24th - 25th, 2021. The different chapters focus on describing the use of single molecule mechanics on a surface and analyze the different steps leading to the design of a single molecule nanocar. The authors present how a single molecule is rotating, how a single molecule gear can participate to a train of molecule gears to propagate motion and how this knowledge is used for the design of nanocars. The way energy is provided to a single molecule and how this energy drives it onto the surface is also analyzed. A large portion of this volume is written by the eight teams selected to participate in the Nanocar Race II event. This book is of great use to graduate students, post-doctoral fellows and researchers who are interested in single molecule mechanics and who want to know more about the fundamentals and applications of this new research field.