Interhemispheric Water Exchange in the Atlantic Ocean


Book Description

Recent results from modeling and observational studies demonstrate that the tropical Atlantic is a critical region for processes that maintain the meridional overturning circulation, such as cross-equatorial exchanges, and for sea surface temperature variability that impacts on climate variability of the coupled tropical ocean/atmosphere system. The theme of this book is the inter-hemispheric and inter-gyre exchanges of heat, salt and fresh water, while its goal is to improve the knowledge of the tropical Atlantic dynamics and how it affects the global ocean. A clear understanding of the dynamics of processes that affect the flow of mass and heat between the southern and the northern hemispheres in the upper few hundred meters in the tropical Atlantic and of those associated to the ocean circulation or to surface signals, from decadal, inter-annual to mesoscale periods, becomes necessary to better evaluate their contribution to the interhemispheric mass exchange. These processes are believed to be largely responsible in driving the sea surface temperature, which in turn, is a critical parameter to investigate ocean-atmospheric interactions. Output produced by regional models is also used to complement the observations and to provide additional information on their spatial and temporal variability. The subtropical cells, by bringing water masses subducted in the subtropics to the equator, and zonal currents investigated here contribute to the interhemispheric water exchange. Special attention is also given to the warm and salty anticyclonic rings shed by the North Brazil Current, which are now known to have a much broader impact, not only on interhemispheric water mass transfer, but also on the environment of remote regions. Observations from different sources are blended together, are used to validate model outputs and are also assimilated into models to obtain a more complete and accurate picture of the oceanic circulation and of its time evolution.




Ocean Circulation and Climate


Book Description

The book represents all the knowledge we currently have on ocean circulation. It presents an up-to-date summary of the state of the science relating to the role of the oceans in the physical climate system. The book is structured to guide the reader through the wide range of world ocean circulation experiment (WOCE) science in a consistent way. Cross-references between contributors have been added, and the book has a comprehensive index and unified reference list. The book is simple to read, at the undergraduate level. It was written by the best scientists in the world who have collaborated to carry out years of experiments to better understand ocean circulation. - Presents in situ and remote observations with worldwide coverage - Provides theoretical understanding of processes within the ocean and at its boundaries to other Earth System components - Allows for simulating ocean and climate processes in the past, present and future using a hierarchy of physical-biogeochemical models




Satellite Altimetry Over Oceans and Land Surfaces


Book Description

Satellite remote sensing, in particular by radar altimetry, is a crucial technique for observations of the ocean surface and of many aspects of land surfaces, and of paramount importance for climate and environmental studies. This book provides a state-of-the-art overview of the satellite altimetry techniques and related missions, and reviews the most-up-to date applications to ocean dynamics and sea level. It also discusses related space-based observations of the ocean surface and of the marine geoid, as well as applications of satellite altimetry to the cryosphere and land surface waters; operational oceanography and its applications to navigation, fishing and defense.




Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics


Book Description

Written by a group of international experts in their field, this book is a review of Lagrangian observation, analysis and assimilation methods in physical and biological oceanography. This multidisciplinary text presents new results on nonlinear analysis of Lagrangian dynamics, the prediction of particle trajectories, and Lagrangian stochastic models. It includes historical information, up-to-date developments, and speculation on future developments in Lagrangian-based observations, analysis, and modeling of physical and biological systems. Containing contributions from experimentalists, theoreticians, and modelers in the fields of physical oceanography, marine biology, mathematics, and meteorology, this book will be of great interest to researchers and graduate students looking for both practical applications and information on the theory of transport and dispersion in physical systems, biological modeling, and data assimilation.




Encyclopedia of Ocean Sciences


Book Description

The oceans cover 70% of the Earth’s surface, and are critical components of Earth’s climate system. This new edition of Encyclopedia of Ocean Sciences, Six Volume Set summarizes the breadth of knowledge about them, providing revised, up to date entries as well coverage of new topics in the field. New and expanded sections include microbial ecology, high latitude systems and the cryosphere, climate and climate change, hydrothermal and cold seep systems. The structure of the work provides a modern presentation of the field, reflecting the input and different perspective of chemical, physical and biological oceanography, the specialized area of expertise of each of the three Editors-in-Chief. In this framework maximum attention has been devoted to making this an organic and unified reference. Represents a one-stop. organic information resource on the breadth of ocean science research Reflects the input and different perspective of chemical, physical and biological oceanography, the specialized area of expertise of each of the three Editors-in-Chief New and expanded sections include microbial ecology, high latitude systems and climate change Provides scientifically reliable information at a foundational level, making this work a resource for students as well as active researches




Measuring Ocean Currents


Book Description

Measuring Ocean Currents: Tools, Technologies, and Data covers all major aspects of ocean current measurements in view of the implications of ocean currents on changing climate, increasing pollution levels, and offshore engineering activities. Although more than 70% of the Earth is covered by ocean, there is limited information on the countless fine- to large-scale water motions taking place within them. This book fills that information gap as the first work that summarizes the state-of-the-art methods and instruments used for surface, subsurface, and abyssal ocean current measurements. Readers of this book will find a wealth of information on Lagrangian measurements, horizontal mapping, imaging, Eulerian measurements, and vertical profiling techniques. In addition, the book describes modern technologies for remote measurement of ocean currents and their signatures, including HF Doppler radar systems, satellite-borne sensors, ocean acoustic tomography, and more. Crucial aspects of ocean currents are described in detail as well, including dispersion of effluents discharged into the sea and transport of beneficial materials—as well as environmentally hazardous materials—from one region to another. The book highlights several important practical applications, showing how measurements relate to climate change and pollution levels, how they affect coastal and offshore engineering activities, and how they can aid in tsunami detection. - Coverage of measurement, mapping and profiling techniques - Descriptions of technologies for remote measurement of ocean currents and their signatures - Reviews crucial aspects of ocean currents, including special emphasis on the planet-spanning thermohaline circulation, known as the ocean's "conveyor belt," and its crucial role in climate change




Ocean Currents


Book Description

Ocean Currents is a derivative of the Encyclopedia of Ocean Sciences, 2nd Edition and serves as an important reference on current ocean current knowledge and expertise in one convenient and accessible source. Its selection of articles—all written by experts in their field—focuses on key ocean current concepts. Its topics include ocean currents, the circulation of deep water, the contrasting circulations of the seas, the circulation in fjords, estuaries and the effects of rivers, and the intermittency and variability of the oceans. Ocean Currents serves as an ideal reference for topical research. References related articles on ocean currents to facilitate further research Richly illustrated with figures and tables that aid in understanding key concepts Includes an introductory overview of ocean currents and then explores each topic in detail, making it useful to experts and graduate-level researchers Topical arrangement makes it the perfect desk reference




Ocean Circulation and Climate


Book Description

The tropical oceans play important roles in the global climate system through ocean transports of heat and freshwater as well as ocean–atmosphere interactions. The developments in observational networks during recent decades have helped us to quantify the strength and variability of most of the ocean general circulations responsible for the transports. Those are discussed in detail in individual sections covering each tropical basin separately with a special emphasis on recent research results. Shallow overturning cells observed in all three tropical basins as well as the deep Atlantic meridional overturning circulation are such examples that are linked to ocean and climate variations on multiple timescales. In addition, tropical ocean–atmosphere interactions associated with oceanic planetary waves cause large-scale climate variations such as El Niño/Southern Oscillation (ENSO), Indian Ocean Dipole, Atlantic Niño, and ENSO Modoki. Recent advances in numerical modeling augmented by in situ and satellite observations are helping the research community to understand ocean process and to predict associated climate variations on seasonal to longer timescales.




Remote Sensing of the Changing Oceans


Book Description

Remote Sensing of the Changing Oceans is a comprehensive account of the basic concepts, theories, methods and applications used in ocean satellite remote sensing. The book provides a synthesis of various new ideas and theories and discusses a series of key research topics in oceanic manifestation of global changes as viewed from space. A variety of research methods used in the analysis and modeling of global changes are introduced in detail along with numerous examples from around the world’s oceans. The authors review the changing oceans at different levels, including Global and Regional Observations, Natural Hazards, Coastal Environment and related scientific issues, all from the unique perspective of Satellite Observation Systems. Thus, the book not only introduces the basics of the changing oceans, but also new developments in satellite remote sensing technology and international cooperation in this emerging field. Danling Tang (Lingzis) received her Ph.D from Hong Kong University of Science and Technology. She conducted research and teaching in Hong Kong, USA, Japan, and South Korea for more than 10 years; in 2004, she received “100 Talents Program of Chinese Academy of Sciences” and returned to China. She was a professor of Fudan University, and now is a Leading Professor of “Remote Sensing of Marine Ecology and Environment” at the South China Sea Institute of Oceanology, Chinese Academy of Sciences. Dr. Tang has been working on satellite remote sensing of marine ecology and environment; her major research interests include ocean dynamics of phytoplankton bloom, global environmental changes, and natural hazards. Dr. Tang has organized several international conferences, workshops, and training, she also services as member of organizing committee for several international scientific organizations; she was the Chairman of the 9th Pan Ocean Remote Sensing Conference (PORSEC 2008), and currently is the President-elect of PORSEC Association.