Intermediate Statistical Mechanics


Book Description

In this new textbook, a number of unusual applications are discussed in addition to the usual topics covered in a course on Statistical Physics. Examples are: statistical mechanics of powders, Peierls instability, graphene, Bose-Einstein condensates in a trap, Casimir effect and the quantum Hall effect. Superfluidity and super-conductivity (including the physics of high-temperature superconductors) have also been discussed extensively.The emphasis on the treatment of these topics is pedagogic, introducing the basic tenets of statistical mechanics, with extensive and thorough discussion of the postulates, ensembles, and the relevant statistics. Many standard examples illustrate the microcanonical, canonical and grand canonical ensembles, as well as the Bose-Einstein and Fermi-Dirac statistics.A special feature of this text is the detailed presentation of the theory of second-order phase transitions and the renormalization group, emphasizing the role of disorder. Non-equilibrium statistical physics is introduced via the Boltzmann transport equation. Additional topics covered here include metastability, glassy systems, the Langevin equation, Brownian motion, and the Fokker-Planck equation.Graduate students will find the presentation readily accessible, since the topics have been treated with great deal of care and attention to detail.




Advanced Statistical Mechanics


Book Description

This short textbook covers roughly 13 weeks of lectures on advanced statistical mechanics at the graduate level. It starts with an elementary introduction to the theory of ensembles from classical mechanics, and then goes on to quantum statistical mechanics with density matrix. These topics are covered concisely and briefly. The advanced topics cover the mean-field theory for phase transitions, the Ising models and their exact solutions, and critical phenomena and their scaling theory. The mean-field theories are discussed thoroughly with several different perspectives — focusing on a single degree, or using Feynman-Jensen-Bogoliubov inequality, cavity method, or Landau theory. The renormalization group theory is mentioned only briefly. As examples of computational and numerical approach, there is a chapter on Monte Carlo method including the cluster algorithms. The second half of the book studies nonequilibrium statistical mechanics, which includes the Brownian motion, the Langevin and Fokker-Planck equations, Boltzmann equation, linear response theory, and the Jarzynski equality. The book ends with a brief discussion of irreversibility. The topics are supplemented by problem sets (with partial answers) and supplementary readings up to the current research, such as heat transport with a Fokker-Planck approach.







Advanced Statistical Mechanics


Book Description

McCoy presents the advances made in statistical mechanics over the last 50 years, including mathematical theorems on order and phase transitions, numerical and series computations of phase diagrams and solutions for important solvable models such as Ising and 8 vortex.




Statistical Mechanics: An Intermediate Course (2nd Edition)


Book Description

This book covers the foundations of classical thermodynamics, with emphasis on the use of differential forms of classical and quantum statistical mechanics, and also on the foundational aspects. In both contexts, a number of applications are considered in detail, such as the general theory of response, correlations and fluctuations, and classical and quantum spin systems. In the quantum case, a self-contained introduction to path integral methods is given. In addition, the book discusses phase transitions and critical phenomena, with applications to the Landau theory and to the Ginzburg-Landau theory of superconductivity, and also to the phenomenon of Bose condensation and of superfluidity. Finally, there is a careful discussion on the use of the renormalization group in the study of critical phenomena.




Statistical Physics


Book Description

The application of statistical methods to physics is essential. This unique book on statistical physics offers an advanced approach with numerous applications to the modern problems students are confronted with. Therefore the text contains more concepts and methods in statistics than the student would need for statistical mechanics alone. Methods from mathematical statistics and stochastics for the analysis of data are discussed as well. The book is divided into two parts, focusing first on the modeling of statistical systems and then on the analysis of these systems. Problems with hints for solution help the students to deepen their knowledge. The third edition has been updated and enlarged with new sections deepening the knowledge about data analysis. Moreover, a customized set of problems with solutions is accessible on the Web at extras.springer.com.




Statistical Mechanics


Book Description

This unique and consistent mathematical treatise contains a deductive description of equilibrium statistics and thermodynamics. The most important elements of non-equilibrium phenomena are also treated. In addition to the fundamentals, the text tries to show how large the area of statistical mechanics is and how many applications can be found here. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications in critical dynamics, as well as fundamental thoughts of irreversibility are discussed. The text will be useful for advanced students in physics and other sciences who have profound knowledge of quantum mechanics.




Topics In Statistical Mechanics (Second Edition)


Book Description

Building on the material learned by students in their first few years of study, Topics in Statistical Mechanics (Second Edition) presents an advanced level course on statistical and thermal physics. It begins with a review of the formal structure of statistical mechanics and thermodynamics considered from a unified viewpoint. There is a brief revision of non-interacting systems, including quantum gases and a discussion of negative temperatures. Following this, emphasis is on interacting systems. First, weakly interacting systems are considered, where the interest is in seeing how small interactions cause small deviations from the non-interacting case. Second, systems are examined where interactions lead to drastic changes, namely phase transitions. A number of specific examples is given, and these are unified within the Landau theory of phase transitions. The final chapter of the book looks at non-equilibrium systems, in particular the way they evolve towards equilibrium. This is framed within the context of linear response theory. Here fluctuations play a vital role, as is formalised in the fluctuation-dissipation theorem.The second edition has been revised particularly to help students use this book for self-study. In addition, the section on non-ideal gases has been expanded, with a treatment of the hard-sphere gas, and an accessible discussion of interacting quantum gases. In many cases there are details of Mathematica calculations, including Mathematica Notebooks, and expression of some results in terms of Special Functions.




Statistical Physics of Fields


Book Description

While many scientists are familiar with fractals, fewer are familiar with scale-invariance and universality which underlie the ubiquity of their shapes. These properties may emerge from the collective behaviour of simple fundamental constituents, and are studied using statistical field theories. Initial chapters connect the particulate perspective developed in the companion volume, to the coarse grained statistical fields studied here. Based on lectures taught by Professor Kardar at MIT, this textbook demonstrates how such theories are formulated and studied. Perturbation theory, exact solutions, renormalization groups, and other tools are employed to demonstrate the emergence of scale invariance and universality, and the non-equilibrium dynamics of interfaces and directed paths in random media are discussed. Ideal for advanced graduate courses in statistical physics, it contains an integrated set of problems, with solutions to selected problems at the end of the book and a complete set available to lecturers at www.cambridge.org/9780521873413.