Handbook on the Physics and Chemistry of Rare Earths


Book Description

Hardbound. The first chapter focuses on one aspect of one of the most stimulating topics in the whole of lanthanide science: the dual valence state elements Ce, Pr and Tb (valences of 3 and 4) and Sm, Eu, Tm and Yb (valences of 2 and 3). The authors bring us up to date on the status of our knowledge of valence fluctuation and heavy fermion 4f systems as gleaned from neutron scattering experiments. The major topics include cerium-based valence fluctuation systems, cerium-based heavy fermion materials and ytterbium-based materials. The remaining quarter of the chapter deals with samarium-, europium- and thulium-based systems.The next chapter deals with the thermal conductivity of rare earth containing materials and is the first major review on this topic. A great deal of information can be obtained on the electrical and magnetic nature of these solids, because of the varied response of the thermal conductivity to long range magnetic order,




Alloys and Intermetallic Compounds


Book Description

This book focuses on the role of modeling in the design of alloys and intermetallic compounds. It includes an introduction to the most important and most used modeling techniques, such as CALPHAD and ab-initio methods, as well as a section devoted to the latest developments in applications of alloys. The book emphasizes the correlation between modeling and technological developments while discussing topics such as wettability of Ultra High Temperature Ceramics by metals, active brazing of diamonds to metals in cutting tools, surface issues in medicine, novel Fe-based superconductors, metallic glasses, high entropy alloys, and thermoelectric materials.




Intermetallic Chemistry


Book Description

Intermetallic science is closely related to physics, chemistry, metallurgy, materials science & technology, and engineering. This book emphasizes the chemical aspects of this science, and therefore the mutual reactivity of metals and the characteristics of intermetallic compounds. Topics included are:• Phase diagrams of alloy systems. Many intermetallic systems form several compounds, generally not obeying common simple stoichiometric rules, which are often homogeneous in a certain range of compositions. The stability and extension of these phases are conveniently presented through phase diagrams.• Selected aspects of intermetallics structural chemistry, with emphasis on the solid state. The general structural characteristics of intermetallic phases are considered, with attention to nomenclature and to alternative and complementary methods of presenting crystal-chemical data. A brief account is given of derivative and degenerate structures, modular aspects of crystal structures, and of a few special groups of alloys such as quasicrystals and amorphous alloys. A number of selected structural prototypes with typical features, their possible grouping in structural "families and their distribution among different types of alloys are provided.• Intermetallic reactivity trends in the Periodic Table. Attention is given to a few selected elemental parameters such as electron configuration and valence electron number and to their changes along the Table, which act as reference factors of the intermetallic behaviour. As an example, the relationships are considered between crystal structure and the number of valence electrons per atom (or per formula) in various classes of compounds or solid solution phases.• Alloying behaviour systematics of intermetallic systems with a description of the intermetallic reactivity of each element, or group of elements, in the order of their position in the Periodic Table. For each pair of metallic elements, their capability to form intermediate phases is summarised by maps and schemes. • A description of small scale preparation methods of intermetallics. A number of interesting and significant peculiarities are, e.g., those related to their high melting points, insolubility in common solvents, etc.· Systematic treatment of alloying behaviour· Wide overview of intermetallic chemistry· Illustrated, with many examples




Scandium Its Occurrence, Chemistry Physics, Metallurgy, Biology and Technology


Book Description

Scandium provides a comprehensive review of all aspects of scandium, including its occurrence in nature; its chemical, physical and technological properties; its biological significance and toxic effects; and its applications. The book covers the discovery and history of scandium, its abundance in rock-forming minerals and common type rocks, and its derivation, extraction, and preparation. It also deals with the physical metallurgy of scandium, its physical and chemical properties, its isotopes, its alloys and intermetallic compounds, and its economic and technological applications. The text is recommended for chemists, metallurgists, and experts who would like to know particularly more about scandium and its possible uses.




Intermetallics


Book Description

Intermetallic compounds play an extraordinary role in daily life for construction materials and well-defined functions that are based on their specific chemical and physical properties, e.g. magnetism and superconductivity. High-tech materials are meanwhile indispensable in our technology-driven information society. The Periodic Table comprises more than 80 metallic elements which offer an incredible potential for formation of binary, ternary and even multinary intermetallic compounds with peculiar crystal structures and properties. The present textbook introduces into the basics of intermetallic chemistry with an emphasis on crystal chemistry and selected chemical and physical properties.




Properties And Applications Of Complex Intermetallics


Book Description

Complex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption with high-temperature stability, high metallic hardness with reduced wetting by liquids, etc.This book is the second of a series of books issued yearly as a deliverable to the European Community of the School established within the European Network of Excellence CMA. Written by reputed experts in the fields of metal physics, surface physics, surface chemistry, metallurgy, and process engineering, this book brings together expertise found inside as well as outside the network to provide a comprehensive overview of the current state of knowledge in CMAs.




Intercalation Chemistry


Book Description

Intercalation Chemistry introduces the specialist reader to the breadth of intercalation chemistry and the newcomer to the diverse research opportunities and challenges available in synthetic and reaction chemistry and also in the controlled modification of physical properties. Topics covered range from graphite chemistry to sheet silicate intercalates, diffusion and shape-selective catalysis in zeolites, organic and organometallic intercalation compounds of the transition metal dichalcogenides, and solvated intercalation compounds of layered chalcogenide and oxide bronzes. This book is comprised of 18 chapters and begins with an introduction to intercalation chemistry. The discussions that follow focus on the intercalation chemistry of graphite and of complex oxides with both two (clays and acid phosphates)- and three (zeolites)-dimensional structures, along with organic conversions that have been discovered using essentially smectite (i.e., montmorillonite- and hectorite-based) intercalates. The next chapters focus on ß-aluminas, acid salts of tetravalent metals with layered structure, and layered chalcogenides and halides with simple and hydrated cations as well as organic and organometallic ions. The book also considers the chemistry, thermodynamics, and applications of intermetallic compounds that incorporate hydrogen, intercalation in the context of biological systems, crystallographic shear structures, and intercalation reactions of oxides and chalcogenides of vanadium, molybdenum, and tungsten. The final chapter touches on the physical properties of some intercalation compounds of the dichalcogenides. This book is intended for researchers in the various materials science disciplines.




Intermetallic Matrix Composites


Book Description

Intermetallic Matrix Composites: Properties and Applications is a comprehensive guide that studies the types and properties of intermetallic matrix composites, including their processing techniques, characterization and the various testing methods associated with these composites. In addition, it presents modeling techniques, their strengthening mechanisms and the important area of failure and repair. Advanced /complex IMCs are then explained, such as Self-healing IMCs and laminated intermetallic composites. The book concludes by delving into the industries that use these materials, including the automotive industry. - Reviews the latest research in intermetallic matrix composites - Contains a focus on properties and applications - Includes contributions from leading experts in the field




Hydrogen in Intermetallic Compounds II


Book Description

The topic of hydrogen in an on metals and alloys is important in a number ofdisciplines including solid-state physics, materials science, physical chemistry, and energy technology. This volume treats the dynamics of hydrogen in intermetallic compounds, surface properties, kinetics, and applications of metal hydrides in energy technology. In addition, selected experimental methods are described. The introductory chapter will enable non-specialists to gain an overall picture of the field and to appreciate the relevant scientific issue. The companion volume, Hydrogene in Intermetallic Compounds I, was published as Vol. 63 of Topics in Applied Physics.




Hydrogen Materials Science and Chemistry of Metal Hydrides


Book Description

The study of metal hydrides opens up promising avenues for the solution of world energy problems, as well as casting light on the interactions of hydrogen with materials, the role of hydrogen in materials science, and the chemistry of metal hydrides, all of which are discussed in this book in terms that range from a global look at the new vision of energy and how hydrogen fits into that future to reviews such as a look at nickel hydride over the last 40 years. Very specific current research in such areas as hydrogen in materials science discuss properties like superconductivity, diffusion EMF, magnetic properties, physicochemical properties, phase composition, and permeability. Hydrogen can also be used as a processing or alloying agent, and in the synthesis of battery electrodes, composite materials and alloys. The interaction of hydrogen with many metals, composites and alloys offers potential hydrogen storage systems. There is also a discussion of hydrogen sensors.