Intermetallic Matrix Composites


Book Description

Intermetallic Matrix Composites: Properties and Applications is a comprehensive guide that studies the types and properties of intermetallic matrix composites, including their processing techniques, characterization and the various testing methods associated with these composites. In addition, it presents modeling techniques, their strengthening mechanisms and the important area of failure and repair. Advanced /complex IMCs are then explained, such as Self-healing IMCs and laminated intermetallic composites. The book concludes by delving into the industries that use these materials, including the automotive industry. - Reviews the latest research in intermetallic matrix composites - Contains a focus on properties and applications - Includes contributions from leading experts in the field




Structural Intermetallics and Intermetallic Matrix Composites


Book Description

Fills a Prominent Gap in a Significant Area of IntermetallicsPresenting a comprehensive overview of structural intermetallics (the most important class of intermetallics), Structural Intermetallics and Intermetallic Matrix Composites is a reference written with the beginning student as well as the practicing professional in mind. Utilizing the auth




Low-density, High-strength Intermetallic Matrix Composites by XD (trademark) Synthesis


Book Description

There is an increasing need for lightweight high performance materials in today's aerospace arena. High temperature engine designs, for example, require engine materials with elevated temperature strength, creep resistance, damage tolerance, oxidation resistance, and low density. Ordered intermetallics are considered potential alternatives to superalloys because they exhibit many of these properties. A major problem with most ordered alloys is their tendency toward inherently low ductility. The reasons can be quite varied depending on the alloy system, and include poor grain-boundary cohesion, an insufficient number of available slip systems (primarily in non-cubic alloys), limited cross slip, and impurity locking of dislocations. However, intermetallics of high symmetry, such as the L12 structure, have a number of slip systems, which can provide some plasticity, at least at intermediate temperatures, thus enabling the matrix to accommodate some of the strain associated with the thermal stresses.




Metal Matrix Composites


Book Description

Since the properties of MMCs can be directly designed "into" the material, they can fulfill all the demands set by design engineers. This book surveys the latest results and development possibilities for MMCs as engineering and functional materials, making it of utmost value to all materials scientists and engineers seeking in-depth background information on the potentials these materials have to offer in research, development and design engineering.




Metal Matrix Composites by Friction Stir Processing


Book Description

Metal Matrix Composites by Friction Stir Processing discusses the capabilities of utilizing friction stir processing (FSP) as a tool to manufacture new materials, such as composites. FSP is considered a tool for grain refinement. However, this work illustrates how FSP has a wider capability due to the material flow and mixing the process offers. This book highlights such aspects by demonstrating the ability of the process to incorporate a second phase and make metal matrix composites (MMCs). The book covers the current research on processing MMCs by FSP, and presents a novel approach of making ductile MMCs by FSP using metal particle reinforcements. - Demonstrates how friction stir processing can be used to make metal matrix composites - Includes a review of different approaches of making metal matrix composites by friction stir processing - Demonstrates the utility of friction stir processing in making new types of non-equilibrium ductile composites - Provides a comparison of properties of friction stir processed composites to those of conventional metal matrix composites




Metal Matrix Composites


Book Description

This book covers several aspects of the synthesis of composites by the pressureless infiltration technique. It describes the methods used to obtain green preforms, such as cold pressed and hot sintering, describing the heating time, load, and time required for pressing the preforms. Additionally, wettability phenomena, which is directly related on infiltration, is extensively described. Wettability process and interfacial reactions are analyzed in many ceramic-metal systems prior to fabricate the composites. A complete description of fabrication processes for Metal Matrix Composites is included. An extensive section on structural, chemical, and mechanical characterization of composites fabricated with aluminum and magnesium alloys as matrices reinforced with titanium carbide (TiC), aluminum nitride (AlN), silicon carbide (SiC) and alumina (Al2O3) is included. Relevant techniques for joining composites, such as welding and brazing are addressed. As well as issues pertaining to the corrosion and wear of composites are discussed as well. Corrosion behavior of some composites exposed to aqueous media was analyzed. Corrosion of composites using TiC and SiC like reinforcement and Al, Ni, and some Al-Cux, Al-Mgx and Al-Cu-Li alloys like matrix is discussed extensively. The structural characterization techniques addressed include: scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), optical microscopy (OM), differential thermal analysis (DTA), high resolution transmission electron microscopy (HRTEM), and thermogravimetry analysis (TGA). Mechanical testing including hardness, elastic modulus, tension tests, and impact tests were used in the characterization of composites. Theoretical models for prediction of some mechanical properties are included too.




Metal and Ceramic Matrix Composites


Book Description

With contributions from leading experts in their respective fields, Metal and Ceramic Matrix Composites provides a comprehensive overview of topics on specific materials and trends. It is a subject regularly included as a final year option in materials science courses and is also of much industrial and academic interest. The book begins wit




An Introduction to Metal Matrix Composites


Book Description

Metal matrix composites constitute a new class of materials, now starting to make a major industrial impact in fields as diverse as aerospace, automotives and electronics. This book gives a comprehensive, integrated coverage of these materials, including the background to analytical-, experimental-, production and application-oriented aspects. Clear pictorial descriptions are given of the basic principles governing various properties and characteristics; these encompass mechanical, thermal, electrical, environmental and wear behaviour. Coverage also extends to material processing and component fabrication aspects and to a survey of commercial usage. This book is aimed primarily at scientists, engineers, production managers and all those involved in research on new materials in general, and metal matrix composites in particular, but may also be suitable for use as a text in beginning graduate and advanced undergraduate courses.




Structural Intermetallics


Book Description




Synthesis and Tribological Applications of Hybrid Materials


Book Description

In-depth knowledge on tribological applications of hybrid composites Synthesis and Tribological Applications of Hybrid Materials provides a comprehensive overview of tribological properties of hybrid composites. The book offers an understanding of the processes, materials, techniques and mechanisms related to the tribological concepts and includes information on the most recent developments in the field. With contributions from an international panel of experts, the book discusses the synthesis and characterization of hybrid materials, as well as their applications in biotechnological and biomedical fields. The book covers a wide-range of versatile topics such as: Tribological assessment on accelerated aging bones in polymeric condition; Nano fracture and wear testing on natural bones; Tribological behaviour of glass fiber with fillers reinforced hybrid polymer composites and jute/glass hybrid composites; Wear properties of glass fiber hybrid, and acid- and silane-modified CNT filled hybrid glass/kenaf epoxy composites; Hybrid natural fibre composites as a friction material; and much more. This important resource: -Discusses recent advancements in the field of tribology and hybrid materials -Offers a guide for professionals in the fields of materials science, mechanical engineering, biomaterials, chemistry, physics and nanotechnology -Integrates theory, synthesis and properties of nybrid materals as well as their applications -Offers an outlook to the future of this burgeoning technology Written for materials scientists, surface chemists, bioengineers, mechanical engineers, engineering scientists and chemical industry professionals, Synthesis and Tribological Applications of Hybrid Materials is a comprehensive resource that explores the most recent developments in the field.