Internal Gravity Waves


Book Description

The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.




Internal Gravity Waves


Book Description

The first comprehensive treatment of the theory for small and large amplitude internal gravity waves, with illustrative examples and exercises.




Internal Gravity Waves


Book Description

The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.







Internal Gravity Waves in the Shallow Seas


Book Description

This book contains a comprehensive study of the internal ocean waves, which play a very important role in ocean physics providing mechanisms for ocean water mixing and circulation, as well as the transportation of gases, nutrients, and a very large number of marine organisms in the ocean body. In contrast to surface waves, the literature on internal waves is not so numerous, mainly due to the difficulties in experimental data collection and in the mathematical description of internal wave propagation. In this book, the basic mathematical principles, a physical description of the observed phenomena, and practical theoretical methods of determination of wave parameters as well as the original method of observation using moving sensors are presented. Special attention is paid to internal wave propagation over changing bottom topographies in shallow seas such as the Baltic Sea. The book is supplemented with an extended list of relevant and extended bibliographies, a subject index, and an author index.




Dynamics of Internal Gravity Waves in the Ocean


Book Description

This monograph creates a systematic interpretation of the theoretical and the most actual experimental aspects of the internal wave dynamics in the ocean. Firstly, it draws attention to the important physical effects from an oceanographical point of view which are presented in mathematical descriptions. Secondly, the book serves as an introduction to the range of modern ideas and the methods in the study of wave processes in dispersive media. The book is meant for specialists in physics of the ocean, oceanography, geophysics, hydroacoustics.




Dynamics of Internal Gravity Waves in the Ocean


Book Description

This monograph creates a systematic interpretation of the theoretical and the most actual experimental aspects of the internal wave dynamics in the ocean. Firstly, it draws attention to the important physical effects from an oceanographical point of view which are presented in mathematical descriptions. Secondly, the book serves as an introduction to the range of modern ideas and the methods in the study of wave processes in dispersive media. The book is meant for specialists in physics of the ocean, oceanography, geophysics, hydroacoustics.




Internal Gravity Waves


Book Description




Nonlinear Water Waves


Book Description

Non-linear behaviour of water waves has recently drawn much attention of scientists and engineers in the fields of oceanography, applied mathematics, coastal engineering, ocean engineering, naval architecture, and others. The IUTAM Symposium on Non-linear Water Waves was organized with the aim of bringing together researchers who are actively studying non-linear water waves from various viewpoints. The papers contained in this book are related to the generation and deformation of non-linear water waves and the non-linear interaction between waves and bodies. That is, various types of non-linear water waves were analyzed on the basis of various well-known equations, experimental studies on breaking waves were presented, and numerical studies of calculating second-order non-linear wave-body interaction were proposed.




Propagation of Internal Gravity Waves in a Medium of Weak Random Vertical Shear


Book Description

The dispersion relation is derived for the ensemble-averaged wave in a Boussinesq fluid with a weak random vertical shear. The basic flow is assumed to be statistically homogeneous in space and time with zero mean. The phase velocity and decay rate are found for the two limiting cases where the wavelength is much greater and much smaller than the correlation length of the basic flow speeds. The decay rate is found to increase as the direction of propagation becomes more horizontal. However, the maximum decrease in phase velocity is found to occur when the wave is propagating at an angle of 50 degrees to the horizontal. These results are compared to those previously published (Keller and Veronis, 1969) for the analagous problem of Rossby waves propagating in the presence of random zonal currents that vary with latitude. (Author).