Structure of Molecules and Internal Rotation


Book Description

Structure of Molecules and Internal Rotation focuses on the processes, methodologies, and reactions involved in internal rotation. The manuscript first offers information on studies on dihalogenoethanes, as well as the spectroscopic and thermal measurements of ethane and its derivatives. Discussions focus on the dielectric constant of halogenoethanes, electron diffraction, Raman effect in ethane derivatives, and entropy difference between rotational isomers. The text also ponders on internal rotation in simple molecules and paraffinic hydrocarbons. The publication examines polypeptides and related compounds and the principles and experimental methods of structure determination. Topics include Raman effect, infrared absorption, molecules with two peptide bonds, and the configuration of a polypeptide chain. The manuscript is a valuable source of data for chemists and readers interested in the structure of molecules and internal rotation.




Rotational Structure in Molecular Infrared Spectra


Book Description

Recent advances in infrared molecular spectroscopy have resulted in sophisticated theoretical and laboratory methods that are difficult to grasp without a solid understanding of the basic principles and underlying theory of vibration-rotation absorption spectroscopy. Rotational Structure in Molecular Infrared Spectra fills the gap between these recent, complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. There is an increasing need for people with the skills and knowledge to interpret vibration-rotation spectra in many scientific disciplines, including applications in atmospheric and planetary research. Consequently, the basic principles of vibration-rotation absorption spectroscopy are addressed for contemporary applications. In addition to covering operational quantum mechanical methods, spherical tensor algebra, and group theoretical methods applied to molecular symmetry, attention is also given to phase conventions and their effects on the values of matrix elements. Designed for researchers and PhD students involved in the interpretation of vibration-rotation spectra, the book intentionally separates basic theoretical arguments (in the appendices), allowing readers who are mainly concerned with applications to skip the principles while at the same time providing a sound theoretical basis for readers who are looking for more foundational information.







Rotational Spectra and Molecular Structure


Book Description

Physical Chemistry, A Series of Monographs: Rotational Spectra and Molecular Structure covers the energy levels and rotational transitions. This book is divided into nine chapters that evaluate the rigid asymmetric top molecules and the nuclear spin statistics for asymmetric tops. Some of the topics covered in the book are the asymmetric rotor functions; rotational transition intensities; classes of molecules; nuclear spin statistics for linear molecules and symmetric tops; and classical appearance of centrifugal and coriolis forces. Other chapters deal with the energy levels and effects of centrifugal distortion, as well as the internuclear distance and moments of inertia. The discussion then shifts to the coriolis coupling effects on rotational constants and the perturbation treatment of vibration-rotational Hamiltonian. The last chapter is devoted to the examination of origin of the quadrupole interaction. The book can provide useful information to chemists, physicists, electrical engineers, students, and researchers.







Frontiers of Molecular Spectroscopy


Book Description

Much of what we know about atoms, molecules, and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. In this book we have collected together twenty chapters by eminent scientists from around the world to describe their work at the cutting edge of molecular spectroscopy. These chapters describe new methodology and applications, instrumental developments, and theory which is taking spectroscopy into new frontiers. The range of topics is broad. Lasers are utilized in much of the research, but their applications range from sub-femtosecond spectroscopy to the study of viruses and also to the investigation of art and archeological artifacts. Three chapters discuss work on biological systems and three others represent laser physics. The recent advances in cavity ringdown spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS), two-dimensional correlation spectroscopy (2D-COS), and microwave techniques are all covered. Chapters on electronic excited states, molecular dynamics, symmetry applications, and neutron scattering are also included and demonstrate the wide utility of spectroscopic techniques. - Provides comprehensive coverage of present spectroscopic investigations - Features 20 chapters written by leading researchers in the field - Covers the important role of molecular spectroscopy in research concerned with chemistry, physics, and biology







Cell Biology by the Numbers


Book Description

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid




Water in Biological and Chemical Processes


Book Description

A unified overview of the dynamical properties of water and its unique and diverse role in biological and chemical processes.