Experiments in International Benchmarking of US Research Fields


Book Description

How can the federal government gauge the overall health of scientific researchâ€"as a whole and in its partsâ€"and determine whether national funding adequately supports national research objectives? It is feasible to monitor US performance with field-by-field peer assessments. This might be done through the establishment of independent panels consisting of researchers who work in a field, individuals who work in closely related fields, and research "users" who follow the field closely. Some of these individuals should be outstanding foreign scientists in the field being examined. This technique of comparative international assessments is also known as international benchmarking. Experiments in International Benchmarking of U.S. Research Fields evaluates the feasibility and utility of the benchmarking technique. In order to do this, the report internationally benchmarks three fields: mathematics, immunology, and materials science and engineering, then summarizes the results of these experiments.




International Benchmarking of U.S. Chemical Engineering Research Competitiveness


Book Description

More than $400 billion worth of products rely on innovations in chemistry. Chemical engineering, as an academic discipline and profession, has enabled this achievement. In response to growing concerns about the future of the discipline, International Benchmarking of U.S. Chemical Engineering Research Competitiveness gauges the standing of the U.S. chemical engineering enterprise in the world. This in-depth benchmarking analysis is based on measures including numbers of published papers, citations, trends in degrees conferred, patent productivity, and awards. The book concludes that the United States is presently, and is expected to remain, among the world's leaders in all subareas of chemical engineering research. However, U.S. leadership in some classical and emerging subareas will be strongly challenged. This critical analysis will be of interest to practicing chemical engineers, professors and students in the discipline, economists, policy makers, major research university administrators, and executives in industries dependent upon innovations in chemistry.




Globalization of Materials R&D


Book Description

Materials Science and Engineering (MSE) R&D is spreading globally at an accelerating rate. As a result, the relative U.S. position in a number of MSE subfields is in a state of flux. To understand better this trend and its implications for the U.S. economy and national security, the Department of Defense (DOD) asked the NRC to assess the status and impacts of the global spread of MSE R&D. This report presents a discussion of drivers affecting U.S. companies' decisions about location of MSE R&D, an analysis of impacts on the U.S. economy and national security, and recommendations to ensure continued U.S. access to critical MSE R&D.




Benchmarking U.S. Science


Book Description




Materials Science and Engineering


Book Description

Materials are the foundation and fabric of manufactured products. In fact, many leading commercial products and military systems could not exist without advanced materials and many of the new products critical to the nation's continued prosperity will come only through the development and commercialization of new materials. Thus, the field of materials science and engineering (MS&E) affects quality of life, industrial competitiveness, and the global environment. The United States leads the world in materials research and development, but does not have as impressive a record in the commercialization of new materials. This book explores the relationships among the producers and users of materials and examines the processes of innovationâ€"from the generation of knowledge to the ultimate integration of a material into a useful product. The authors recommend ways to accelerate the rate at which new ideas are integrated into finished products. Real-life case studies provide an accurate depiction of the processes that take materials and process innovations from the laboratory, to the factory floor, and ultimately to the consumer, drawing on experiences with three distinctive MS&E applicationsâ€"advanced aircraft turbines, automobiles, and computer chips and information-storage devices.




A Strategy for Assessing Science


Book Description

A Strategy for Assessing Science offers strategic advice on the perennial issue of assessing rates of progress in different scientific fields. It considers available knowledge about how science makes progress and examines a range of decision-making strategies for addressing key science policy concerns. These include avoiding undue conservatism that may arise from the influence of established disciplines; achieving rational, high-quality, accountable, and transparent decision processes; and establishing an appropriate balance of influence between scientific communities and agency science managers. A Strategy for Assessing Science identifies principles for setting priorities and specific recommendations for the context of behavioral and social research on aging.




The National Science Foundation's Materials Research Science and Engineering Centers Program


Book Description

The Materials Research Science and Engineering Centers (MRSEC) Impact Assessment Committee was convened by the National Research Council in response to an informal request from the National Science Foundation. Charged to examine the impact of the MRSEC program and to provide guidance for the future, the committee included experts from across materials research as well as several from outside the field. The committee developed a general methodology to examine the MRSEC centers and after extensive research and analysis, came to the following conclusions. MRSEC center awards continue to be in great demand. The intense competition within the community for them indicates a strong perceived value. Using more quantitative measures, the committee examined the performance and impact of MRSEC activities over the past decade in the areas of research, facilities, education and outreach, and industrial collaboration and technology transfer. The MRSEC program has had important impacts of the same high standard of quality as those of other multi-investigator or individual-investigator programs. Although the committee was largely unable to attribute observed impacts uniquely to the MRSEC program, MRSECs generally mobilize efforts that would not have occurred otherwise. Because of an observed decline in the effectiveness of the centers, the committee recommended a restructuring the MRSEC program to allow more efficient use and leveraging of resources. The new program should fully invest in centers of excellence as well as in stand-alone teams of researchers to allow tighter focus on key strengths of the program. In its report, the committee outlines one potential vision for how this might be accomplished in a revenue-neutral fashion.







Capitalizing on Investments in Science and Technology


Book Description

Although the United States is currently capitalizing on its investment in science and technology effectively, there remains much room for improvement. This volume identifies the ingredients for success in capitalizing on such investments to produce national benefits, assesses current U.S. performance, and identifies future challenges. The book cites specific examples and examines several cross-cutting issues. It explores the possibility that the national research portfolio is losing diversity as a result of less long-term research in critical fields such as networking and materials. It also examines the implications of imbalances in the supply of and demand for science and engineering talent in emerging interdisciplinary fields such as bioinformatics.




Capitalizing on Investments in Science and Technology


Book Description

Although the United States is currently capitalizing on its investment in science and technology effectively, there remains much room for improvement. This volume identifies the ingredients for success in capitalizing on such investments to produce national benefits, assesses current U.S. performance, and identifies future challenges. The book cites specific examples and examines several cross-cutting issues. It explores the possibility that the national research portfolio is losing diversity as a result of less long-term research in critical fields such as networking and materials. It also examines the implications of imbalances in the supply of and demand for science and engineering talent in emerging interdisciplinary fields such as bioinformatics.