INIS Atomindex


Book Description




The Physics of Actinide Compounds


Book Description

The authors' aim is to present a review of experimental and theoretical research that has been done to establish and to explain the physical properties of actinide compounds. The book is aimed at physicists and chemists. It was thought useful to collect a large selection of diagrams of experimental data scattered in the literature. Experiment and theory are presented separately, with cross references. Not all work has been included: rather, typical examples are discussed. We apologize to all researchers whose work has not been quoted. Since we report on an active field of research, clearly the data and their interpretation are subject to change. We benefitted greatly from discussions with many of our colleagues, particularly with Drs. G. H. Lander and W. Suski. The help of Mrs. C. Bovey and Ch. Lewis in the preparation of the manuscript, and the artwork and photo graphic work of Ms. Y. Magnenat and E. Spielmann of the Institute of Experi mental Physics of the University of Lausanne, are gratefully acknowledged. Our particular thanks are due to Ms. J. Ubby for her skillful and patient editorial work.




The Actinides: Electronic Structure and Related Properties


Book Description

The Actinides: Electronic Structure and Related Properties, Volume I reviews major advances that have been made concerning the electronic structure and properties of actinide elements, alloys, and compounds. The electronic energy band structure and magnetic properties of the actinides are examined, and results of hyperfine and neutron scattering studies are presented. Comprised of six chapters, this book opens with a historical introduction to actinide research followed by a chapter on crystal field theory that discusses the behavior of 5f electrons in actinide compounds when exposed to strong crystal-field interactions, with emphasis on the strong intra-atomic correlation between electrons. The following chapters discuss the electronic energy band structure of the actinide metals, as derived from energy band theory; the magnetic properties of the actinide compounds in relation to their electronic structure; and the microscopic electronic properties of actinide metals and compounds obtained from nuclear magnetic resonance and neutron scattering studies. The final chapter summarizes the unique contribution by slow neutron-scattering experiments. This volume will be useful to scientists involved in work on the actinides as well as newcomers in the field.




Handbook on the Physics and Chemistry of Rare Earths


Book Description

Optical spectroscopy has been instrumental in the discovery of many lanthanide elements. In return, these elements have always played a prominent role in lighting devices and light conversion technologies (Auer mantles, incandescent lamps, lasers, cathode-ray and plasma displays). They are also presently used in highly sensitive luminescent bio-analyses and cell imaging. This volume of the Handbook on the Physics and Chemistry of Rare Earths is entirely devoted to the photophysical properties of these elements. It is dedicated to the late Professor William T (Bill) Carnall who has pioneered the understanding of lanthanide spectra in the 1960's and starts with a Dedication to this scientist. The following five chapters describe various aspects of lanthanide spectroscopy and its applications. Chapters 231 presents state-of-the-art theoretical calculations of lanthanide energy levels and transition intensities. It is followed by a review (Chapter 232) on both theoretical and experimental aspects of f-d transitions, a less well known field of lanthanide spectroscopy, yet very important for the design of new optical materials. Chapter 233 describes how confinement effects act on the photophysical properties of lanthanides when they are inserted into nanomaterials, including nanoparticles, nanosheets, nanowires, nanotubes, insulating and semiconductor nanocrystals. The use of lanthanide chelates for biomedical analyses is presented in Chapter 234; long lifetimes of the excited states of lanthanide ions allow the use of time-resolved spectroscopy, which leads to highly sensitive analyses devoid of background effect from the autofluorescence of the samples. The last review (Chapter 235) provides a comprehensive survey of near-infrared (NIR) emitting molecular probes and devices, spanning an all range of compounds, from simple chelates to macrocyclic complexes, heterometallic functional edifices, coordination polymers and other extended structures. Applications ranging from telecommunications to light-emitting diodes and biomedical analyses are assessed.- Provides a comprehensive look at optical spectroscopy and its applications- A volume in the continuing authoritative series which deals with the chemistry, materials science, physics and technology of the rare earth elements




Physics Briefs


Book Description




ERDA Energy Research Abstracts


Book Description







Transplutonium Elements


Book Description




ERDA Energy Research Abstracts


Book Description