International Regulation of Gene Editing Technologies in Crops


Book Description

This open access book analyzes the regulation and governance of gene editing in the global agrifood system as applications of gene editing, regulations and the intellectual property landscape continue to evolve. The primary focus of the manuscript is the dynamic interactions between regulatory frameworks and agricultural applications of gene editing in plant breeding. The goal is to give readers a holistic perspective on why the status of gene editing in agricultural applications is in a state of flux in some jurisdictions (e.g., the European Union) while more settled in others (e.g., Canada). Readers are provided with a clearer picture of what the future might hold for the use of gene editing in agriculture as a means to address food insecurity as the climate crisis grows and amid global geopolitical and economic turbulence.




Global Regulatory Outlook for CRISPRized Plants


Book Description

Global Regulatory Outlook of CRISPRized Plants summarizes CRISPR/Cas systems and applications for precise editing of plant genomes and discusses the global regulatory framework for CRISPR edited crops. While CRISPR technology has become a routine, cheap and an efficient method to generate edited crops with superior traits, how these crops will be regulated, will determine the future of this technology. Understanding the current state of regulation, the concerns, issues and foundations for decisions will be key in determining how this technology is used going forward. Global Regulatory Outlook of CRISPRized Plants highlights regulatory classification of CRISPR modifications such as SDN1, SDN2 and SDN3 and their global regulation. and discusses the social, ethical, governance, and policy issues related to CRISPR edited crops. This important summary will be vital to the successful commercialization of CRISPR technology and biosafety concerns associated with this technology. Presents regulatory frameworks for CRISPR edited crops in the USA, Canada, Australia and New Zealand, Japan, EU, Africa, and Asia Includes a specific chapter on global regulation of genetically engineered crops Addresses public perception, social aspects, and ethical concerns that are impacting the commercialization of CRISPR edited crops




Human Genome Editing


Book Description

Genome editing is a powerful new tool for making precise alterations to an organism's genetic material. Recent scientific advances have made genome editing more efficient, precise, and flexible than ever before. These advances have spurred an explosion of interest from around the globe in the possible ways in which genome editing can improve human health. The speed at which these technologies are being developed and applied has led many policymakers and stakeholders to express concern about whether appropriate systems are in place to govern these technologies and how and when the public should be engaged in these decisions. Human Genome Editing considers important questions about the human application of genome editing including: balancing potential benefits with unintended risks, governing the use of genome editing, incorporating societal values into clinical applications and policy decisions, and respecting the inevitable differences across nations and cultures that will shape how and whether to use these new technologies. This report proposes criteria for heritable germline editing, provides conclusions on the crucial need for public education and engagement, and presents 7 general principles for the governance of human genome editing.




Genetically Engineered Crops


Book Description

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.




Regulation of Genome Editing in Plant Biotechnology


Book Description

This book provides in-depth insights into the regulatory frameworks of five countries and the EU concerning the regulation of genome edited plants. The country reports form the basis for a comparative analysis of the various national regulations governing genetically modified organisms (GMOs) in general and genome edited plants in particular, as well as the underlying regulatory approaches.The reports, which focus on the regulatory status quo of genome edited plants in Argentina, Australia, Canada, the EU, Japan and the USA, were written by distinguished experts following a uniform structure. On this basis, the legal frameworks are compared in order to foster a rational assessment of which approaches could be drawn upon to adjust, or to completely realign, the current EU regime for GMOs. In addition, a separate chapter identifies potential best practices for the regulation of plants derived from genome editing.




CRISPR and RNAi Systems


Book Description

Plants are vulnerable to pathogens including fungi, bacteria, and viruses, which cause critical problems and deficits. Crop protection by plant breeding delivers a promising solution with no obvious effect on human health or the local ecosystem. Crop improvement has been the most powerful approach for producing unique crop cultivars since domestication occurred, making possible the main innovations in feeding the globe and community development. Genome editing is one of the genetic devices that can be implemented, and disease resistance is frequently cited as the most encouraging application of CRISPR/Cas9 technology in agriculture. Nanobiotechnology has harnessed the power of genome editing to develop agricultural crops. Nanosized DNA or RNA nanotechnology approaches could contribute to raising the stability and performance of CRISPR guide RNAs. This book brings together the latest research in these areas. CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection presents a complete understanding of the RNAi and CRISPR/Cas9 techniques for controlling mycotoxins, fighting plant nematodes, and detecting plant pathogens. CRISPR/Cas genome editing enables efficient targeted modification in most crops, thus promising to accelerate crop improvement. CRISPR/Cas9 can be used for management of plant insects, and various plant pathogens. The book is an important reference source for both plant scientists and environmental scientists who want to understand how nano biotechnologically based approaches are being used to create more efficient plant protection and plant breeding systems. Shows how nanotechnology is being used as the basis for new solutions for more efficient plant breeding and plant protection Outlines the major techniques and applications of both CRISPR and RNAi technologies Assesses the major challenges of escalating these technologies on a mass scale







Heritable Human Genome Editing


Book Description

Heritable human genome editing - making changes to the genetic material of eggs, sperm, or any cells that lead to their development, including the cells of early embryos, and establishing a pregnancy - raises not only scientific and medical considerations but also a host of ethical, moral, and societal issues. Human embryos whose genomes have been edited should not be used to create a pregnancy until it is established that precise genomic changes can be made reliably and without introducing undesired changes - criteria that have not yet been met, says Heritable Human Genome Editing. From an international commission of the U.S. National Academy of Medicine, U.S. National Academy of Sciences, and the U.K.'s Royal Society, the report considers potential benefits, harms, and uncertainties associated with genome editing technologies and defines a translational pathway from rigorous preclinical research to initial clinical uses, should a country decide to permit such uses. The report specifies stringent preclinical and clinical requirements for establishing safety and efficacy, and for undertaking long-term monitoring of outcomes. Extensive national and international dialogue is needed before any country decides whether to permit clinical use of this technology, according to the report, which identifies essential elements of national and international scientific governance and oversight.




OMICs-based Techniques for Global Food Security


Book Description

OMICs-based Techniques for Global Food Security Forward-thinking resource discussing how to integrate OMICs and novel genome editing technologies for sustainable crop production OMICS-based Techniques for Global Food Security provides an in-depth understanding of the mechanisms of OMICs techniques for crop improvement, details how OMICs techniques can contribute to identifying genes and traits with economic benefits, and explains how to develop crop plants with improved yield, quality, and resistance to stresses through genome editing technologies, providing evidence on the developments of climate resilient crops via applications of genome editing techniques throughout. The text covers the application of OMICs in crop plants, the integration of bioinformatics and multi-OMICs for precision breeding, de-novo domestication, CRISPR/Cas system for crop improvement, hybrid seed production, transgene free breeding, regulation for genome edit crops, bioinformatics and genome editing, and other topics related to OMICs and genome editing. The text also includes a chapter on global regulations for genome edited crops, and explains how these regulations influence novel plant breeding techniques in their adopted countries. Edited by two highly qualified academics, OMICs-based Techniques for Global Food Security covers topics such as: Crops genome sequencing and their application for crop improvement, and functional characterization of cereal genome The role of OMICs-based technologies in plant sciences and utilization of different multi-OMICs approaches for crop improvement Genomic database and genetic resource of cereals, speed breeding for rapid crop improvement, and evolution of genome editing technologies CRISPR system discovery, history, and future perspective, and CRISPR/Cas system for biotic and abiotic stress resistance in cereals Providing a collection of recent literature focusing on developments and applications of OMICs-based technologies for crop improvement, OMICs-based Techniques for Global Food Security is an important read for plant breeders, molecular biologists, researchers, postdoctoral fellows, and students in disciplines for developing crops with high yield and nutritional potential.