Electromagnetic Compatibility


Book Description

This totally revised and expanded reference/text provides comprehensive, single-source coverage of the design, problem solving, and specifications of electromagnetic compatibility (EMC) into electrical equipment/systems-including new information on basic theories, applications, evaluations, prediction techniques, and practical diagnostic options for preventing EMI through cost-effective solutions. Offers the most recent guidelines, safety limits, and standards for human exposure to electromagnetic fields! Containing updated data on EMI diagnostic verification measurements, as well as over 900 drawings, photographs, tables, and equations-500 more than the previous edition-Electromagnetic Compatibility: Principles and Applications, Second Edition:







Electromagnetic Compatibility


Book Description

Offers a text useful for practicing nonspecialist engineers and those new to EMC Contains worked examples and applications of all equations Provides computer code and contains programs available for readers Covers certification EMC measurement techniques Includes a full chapter on system level EMC/EMI







Electromagnetic Compatibility of Integrated Circuits


Book Description

Electromagnetic Compatibility of Integrated Circuits: Techniques for Low Emission and Susceptibility focuses on the electromagnetic compatibility of integrated circuits. The basic concepts, theory, and an extensive historical review of integrated circuit emission and susceptibility are provided. Standardized measurement methods are detailed through various case studies. EMC models for the core, I/Os, supply network, and packaging are described with applications to conducted switching noise, signal integrity, near-field and radiated noise. Case studies from different companies and research laboratories are presented with in-depth descriptions of the ICs, test set-ups, and comparisons between measurements and simulations. Specific guidelines for achieving low emission and susceptibility derived from the experience of EMC experts are presented.




EMC and the Printed Circuit Board


Book Description

This accessible, new reference work shows how and why RF energy iscreated within a printed circuit board and the manner in whichpropagation occurs. With lucid explanations, this book enablesengineers to grasp both the fundamentals of EMC theory and signalintegrity and the mitigation process needed to prevent an EMCevent. Author Montrose also shows the relationship between time andfrequency domains to help you meet mandatory compliancerequirements placed on printed circuit boards. Using real-world examples the book features: Clear discussions, without complex mathematical analysis, offlux minimization concepts Extensive analysis of capacitor usage for variousapplications Detailed examination of components characteristics with variousgrounding methodologies, including implementation techniques An in-depth study of transmission line theory A careful look at signal integrity, crosstalk, andtermination




Electromagnetic Compatibility Engineering


Book Description

Praise for Noise Reduction Techniques IN electronic systems "Henry Ott has literally 'written the book' on the subject of EMC. . . . He not only knows the subject, but has the rare ability to communicate that knowledge to others." —EE Times Electromagnetic Compatibility Engineering is a completely revised, expanded, and updated version of Henry Ott's popular book Noise Reduction Techniques in Electronic Systems. It reflects the most recent developments in the field of electromagnetic compatibility (EMC) and noise reduction¿and their practical applications to the design of analog and digital circuits in computer, home entertainment, medical, telecom, industrial process control, and automotive equipment, as well as military and aerospace systems. While maintaining and updating the core information—such as cabling, grounding, filtering, shielding, digital circuit grounding and layout, and ESD—that made the previous book such a wide success, this new book includes additional coverage of: Equipment/systems grounding Switching power supplies and variable-speed motor drives Digital circuit power distribution and decoupling PCB layout and stack-up Mixed-signal PCB layout RF and transient immunity Power line disturbances Precompliance EMC measurements New appendices on dipole antennae, the theory of partial inductance, and the ten most common EMC problems The concepts presented are applicable to analog and digital circuits operating from below audio frequencies to those in the GHz range. Throughout the book, an emphasis is placed on cost-effective EMC designs, with the amount and complexity of mathematics kept to the strictest minimum. Complemented with over 250 problems with answers, Electromagnetic Compatibility Engineering equips readers with the knowledge needed to design electronic equipment that is compatible with the electromagnetic environment and compliant with national and international EMC regulations. It is an essential resource for practicing engineers who face EMC and regulatory compliance issues and an ideal textbook for EE courses at the advanced undergraduate and graduate levels.




Electromagnetic Compatibility of Electric Vehicle


Book Description

This book introduces the electromagnetic compatibility(EMC) of electric vehicle(EV), including EMC of the whole vehicle, electromagnetic interference(EMI) prediction and suppression of motor drive system, EMI prediction and suppression of DC-DC converter, electromagnetic field safety and EMC of wireless charging system, signal integrity and EMC of the vehicle controller unit(VCU), EMC of battery management system(BMS), electromagnetic radiated emission diagnosis and suppression of the whole vehicle, etc. The analysis method, modeling and simulation method, test method and rectification method of EMC are demonstrated. The simulation and experimental results are presented as tables and figures. This book is useful as reference for graduate students, senior undergraduates and engineering technicians of vehicle engineering related majors. For EMI prediction, suppression and EMC optimization design for EVs, this book provides reference for engineers to solve EMC problems. This book is intended for senior undergraduates, postgraduates, lecturers and laboratory researchers engaged in electric vehicle and electromagnetic compatibility research.




Electromagnetic Interference and Compatibility


Book Description

Recent progress in the fields of Electrical and Electronic Engineering has created new application scenarios and new Electromagnetic Compatibility (EMC) challenges, along with novel tools and methodologies to address them. This volume, which collects the contributions published in the “Electromagnetic Interference and Compatibility” Special Issue of MDPI Electronics, provides a vivid picture of current research trends and new developments in the rapidly evolving, broad area of EMC, including contributions on EMC issues in digital communications, power electronics, and analog integrated circuits and sensors, along with signal and power integrity and electromagnetic interference (EMI) suppression properties of materials.




Modeling and Design of Electromagnetic Compatibility for High-Speed Printed Circuit Boards and Packaging


Book Description

Modeling and Design of Electromagnetic Compatibility for High-Speed Printed Circuit Boards and Packaging presents the electromagnetic modelling and design of three major electromagnetic compatibility (EMC) issues related to the high-speed printed circuit board (PCB) and electronic packages: signal integrity (SI), power integrity (PI), and electromagnetic interference (EMI). The emphasis is put on two essential passive components of PCBs and packages: the power distribution network and the signal distribution network. This book includes two parts. Part one talks about the field-circuit hybrid methods used for the EMC modeling, including the modal method, the integral equation method, the cylindrical wave expansion method and the de-embedding method. Part two illustrates EMC design methods and explores the applications of novel metamaterials and two-dimensional materials on traditional EMC problems. This book is designed to enhance worthwhile electromagnetic theory and mathematical methods for practical engineers and to train students with advanced EMC applications.