Introduction to IDDQ Testing


Book Description

Testing techniques for VLSI circuits are undergoing many exciting changes. The predominant method for testing digital circuits consists of applying a set of input stimuli to the IC and monitoring the logic levels at primary outputs. If, for one or more inputs, there is a discrepancy between the observed output and the expected output then the IC is declared to be defective. A new approach to testing digital circuits, which has come to be known as IDDQ testing, has been actively researched for the last fifteen years. In IDDQ testing, the steady state supply current, rather than the logic levels at the primary outputs, is monitored. Years of research suggests that IDDQ testing can significantly improve the quality and reliability of fabricated circuits. This has prompted many semiconductor manufacturers to adopt this testing technique, among them Philips Semiconductors, Ford Microelectronics, Intel, Texas Instruments, LSI Logic, Hewlett-Packard, SUN microsystems, Alcatel, and SGS Thomson. This increase in the use of IDDQ testing should be of interest to three groups of individuals associated with the IC business: Product Managers and Test Engineers, CAD Tool Vendors and Circuit Designers. Introduction to IDDQ Testing is designed to educate this community. The authors have summarized in one volume the main findings of more than fifteen years of research in this area.




CMOS Electronics


Book Description

CMOS manufacturing environments are surrounded with symptoms that can indicate serious test, design, or reliability problems, which, in turn, can affect the financial as well as the engineering bottom line. This book educates readers, including non-engineers involved in CMOS manufacture, to identify and remedy these causes. This book instills the electronic knowledge that affects not just design but other important areas of manufacturing such as test, reliability, failure analysis, yield-quality issues, and problems. Designed specifically for the many non-electronic engineers employed in the semiconductor industry who need to reliably manufacture chips at a high rate in large quantities, this is a practical guide to how CMOS electronics work, how failures occur, and how to diagnose and avoid them. Key features: Builds a grasp of the basic electronics of CMOS integrated circuits and then leads the reader further to understand the mechanisms of failure. Unique descriptions of circuit failure mechanisms, some found previously only in research papers and others new to this publication. Targeted to the CMOS industry (or students headed there) and not a generic introduction to the broader field of electronics. Examples, exercises, and problems are provided to support the self-instruction of the reader.




The Boundary-Scan Handbook


Book Description

Boundary-Scan, formally known as IEEE/ANSI Standard 1149.1-1990, is a collection of design rules applied principally at the Integrated Circuit (IC) level that allow software to alleviate the growing cost of designing, producing and testing digital systems. A fundamental benefit of the standard is its ability to transform extremely difficult printed circuit board testing problems that could only be attacked with ad-hoc testing methods into well-structured problems that software can easily deal with. IEEE standards, when embraced by practicing engineers, are living entities that grow and change quickly. The Boundary-Scan Handbook, Second Edition: Analog and Digital is intended to describe these standards in simple English rather than the strict and pedantic legalese encountered in the standards. The 1149.1 standard is now over eight years old and has a large infrastructure of support in the electronics industry. Today, the majority of custom ICs and programmable devices contain 1149.1. New applications for the 1149.1 protocol have been introduced, most notably the `In-System Configuration' (ISC) capability for Field Programmable Gate Arrays (FPGAs). The Boundary-Scan Handbook, Second Edition: Analog and Digital updates the information about IEEE Std. 1149.1, including the 1993 supplement that added new silicon functionality and the 1994 supplement that formalized the BSDL language definition. In addition, the new second edition presents completely new information about the newly approved 1149.4 standard often termed `Analog Boundary-Scan'. Along with this is a discussion of Analog Metrology needed to make use of 1149.1. This forms a toolset essential for testing boards and systems of the future.




Defect Oriented Testing for CMOS Analog and Digital Circuits


Book Description

Defect oriented testing is expected to play a significant role in coming generations of technology. Smaller feature sizes and larger die sizes will make ICs more sensitive to defects that can not be modeled by traditional fault modeling approaches. Furthermore, with increased level of integration, an IC may contain diverse building blocks. Such blocks include, digital logic, PLAs, volatile and non-volatile memories, and analog interfaces. For such diverse building blocks, traditional fault modeling and test approaches will become increasingly inadequate. Defect oriented testing methods have come a long way from a mere interesting academic exercise to a hard industrial reality. Many factors have contributed to its industrial acceptance. Traditional approaches of testing modern integrated circuits (ICs) have been found to be inadequate in terms of quality and economics of test. In a globally competitive semiconductor market place, overall product quality and economics have become very important objectives. In addition, electronic systems are becoming increasingly complex and demand components of highest possible quality. Testing, in general and, defect oriented testing, in particular, help in realizing these objectives. Defect Oriented Testing for CMOS Analog and Digital Circuits is the first book to provide a complete overview of the subject. It is essential reading for all design and test professionals as well as researchers and students working in the field. `A strength of this book is its breadth. Types of designs considered include analog and digital circuits, programmable logic arrays, and memories. Having a fault model does not automatically provide a test. Sometimes, design for testability hardware is necessary. Many design for testability ideas, supported by experimental evidence, are included.' ... from the Foreword by Vishwani D. Agrawal




Integrated Circuit Manufacturability


Book Description

"INTEGRATED CIRCUIT MANUFACTURABILITY provides comprehensive coverage of the process and design variables that determine the ease and feasibility of fabrication (or manufacturability) of contemporary VLSI systems and circuits. This book progresses from semiconductor processing to electrical design to system architecture. The material provides a theoretical background as well as case studies, examining the entire design for the manufacturing path from circuit to silicon. Each chapter includes tutorial and practical applications coverage. INTEGRATED CIRCUIT MANUFACTURABILITY illustrates the implications of manufacturability at every level of abstraction, including the effects of defects on the layout, their mapping to electrical faults, and the corresponding approaches to detect such faults. The reader will be introduced to key practical issues normally applied in industry and usually required by quality, product, and design engineering departments in today's design practices: * Yield management strategies * Effects of spot defects * Inductive fault analysis and testing * Fault-tolerant architectures and MCM testing strategies. This book will serve design and product engineers both from academia and industry. It can also be used as a reference or textbook for introductory graduate-level courses on manufacturing."




Test and Design-for-Testability in Mixed-Signal Integrated Circuits


Book Description

Test and Design-for-Testability in Mixed-Signal Integrated Circuits deals with test and design for test of analog and mixed-signal integrated circuits. Especially in System-on-Chip (SoC), where different technologies are intertwined (analog, digital, sensors, RF); test is becoming a true bottleneck of present and future IC projects. Linking design and test in these heterogeneous systems will have a tremendous impact in terms of test time, cost and proficiency. Although it is recognized as a key issue for developing complex ICs, there is still a lack of structured references presenting the major topics in this area. The aim of this book is to present basic concepts and new ideas in a manner understandable for both professionals and students. Since this is an active research field, a comprehensive state-of-the-art overview is very valuable, introducing the main problems as well as the ways of solution that seem promising, emphasizing their basis, strengths and weaknesses. In essence, several topics are presented in detail. First of all, techniques for the efficient use of DSP-based test and CAD test tools. Standardization is another topic considered in the book, with focus on the IEEE 1149.4. Also addressed in depth is the connecting design and test by means of using high-level (behavioural) description techniques, specific examples are given. Another issue is related to test techniques for well-defined classes of integrated blocks, like data converters and phase-locked-loops. Besides these specification-driven testing techniques, fault-driven approaches are described as they offer potential solutions which are more similar to digital test methods. Finally, in Design-for-Testability and Built-In-Self-Test, two other concepts that were taken from digital design, are introduced in an analog context and illustrated for the case of integrated filters. In summary, the purpose of this book is to provide a glimpse on recent research results in the area of testing mixed-signal integrated circuits, specifically in the topics mentioned above. Much of the work reported herein has been performed within cooperative European Research Projects, in which the authors of the different chapters have actively collaborated. It is a representative snapshot of the current state-of-the-art in this emergent field.




Debugging Systems-on-Chip


Book Description

This book describes an approach and supporting infrastructure to facilitate debugging the silicon implementation of a System-on-Chip (SOC), allowing its associated product to be introduced into the market more quickly. Readers learn step-by-step the key requirements for debugging a modern, silicon SOC implementation, nine factors that complicate this debugging task, and a new debug approach that addresses these requirements and complicating factors. The authors’ novel communication-centric, scan-based, abstraction-based, run/stop-based (CSAR) debug approach is discussed in detail, showing how it helps to meet debug requirements and address the nine, previously identified factors that complicate debugging silicon implementations of SOCs. The authors also derive the debug infrastructure requirements to support debugging of a silicon implementation of an SOC with their CSAR debug approach. This debug infrastructure consists of a generic on-chip debug architecture, a configurable automated design-for-debug flow to be used during the design of an SOC, and customizable off-chip debugger software. Coverage includes an evaluation of the efficiency and effectiveness of the CSAR approach and its supporting infrastructure, using six industrial SOCs and an illustrative, example SOC model. The authors also quantify the hardware cost and design effort to support their approach.




Defect-Oriented Testing for Nano-Metric CMOS VLSI Circuits


Book Description

The 2nd edition of defect oriented testing has been extensively updated. New chapters on Functional, Parametric Defect Models and Inductive fault Analysis and Yield Engineering have been added to provide a link between defect sources and yield. The chapter on RAM testing has been updated with focus on parametric and SRAM stability testing. Similarly, newer material has been incorporated in digital fault modeling and analog testing chapters. The strength of Defect Oriented Testing for nano-Metric CMOS VLSIs lies in its industrial relevance.




Electronic Design Automation for IC System Design, Verification, and Testing


Book Description

The first of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC System Design, Verification, and Testing thoroughly examines system-level design, microarchitectural design, logic verification, and testing. Chapters contributed by leading experts authoritatively discuss processor modeling and design tools, using performance metrics to select microprocessor cores for integrated circuit (IC) designs, design and verification languages, digital simulation, hardware acceleration and emulation, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on high-level synthesis, system-on-chip (SoC) block-based design, and back-annotating system-level models Offering improved depth and modernity, Electronic Design Automation for IC System Design, Verification, and Testing provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.




The VLSI Handbook


Book Description

For the new millenium, Wai-Kai Chen introduced a monumental reference for the design, analysis, and prediction of VLSI circuits: The VLSI Handbook. Still a valuable tool for dealing with the most dynamic field in engineering, this second edition includes 13 sections comprising nearly 100 chapters focused on the key concepts, models, and equations. Written by a stellar international panel of expert contributors, this handbook is a reliable, comprehensive resource for real answers to practical problems. It emphasizes fundamental theory underlying professional applications and also reflects key areas of industrial and research focus. WHAT'S IN THE SECOND EDITION? Sections on... Low-power electronics and design VLSI signal processing Chapters on... CMOS fabrication Content-addressable memory Compound semiconductor RF circuits High-speed circuit design principles SiGe HBT technology Bipolar junction transistor amplifiers Performance modeling and analysis using SystemC Design languages, expanded from two chapters to twelve Testing of digital systems Structured for convenient navigation and loaded with practical solutions, The VLSI Handbook, Second Edition remains the first choice for answers to the problems and challenges faced daily in engineering practice.