Machine Learning and the Internet of Medical Things in Healthcare


Book Description

Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks. - Provides an introduction to the Internet of Medical Things through the principles and applications of machine learning - Explains the functions and applications of machine learning in various applications such as ultrasound imaging, biomedical signal processing, robotics, and biomechatronics - Includes coverage of the evolution of healthcare applications with machine learning, including Clinical Decision Support Systems, artificial intelligence in biomedical engineering, and AI-enabled connected health informatics, supported by real-world case studies




Hybrid Artificial Intelligence and IoT in Healthcare


Book Description

This book covers applications for hybrid artificial intelligence (AI) and Internet of Things (IoT) for integrated approach and problem solving in the areas of radiology, drug interactions, creation of new drugs, imaging, electronic health records, disease diagnosis, telehealth, and mobility-related problems in healthcare. The book discusses the convergence of AI and the hybrid approaches in healthcare which optimizes the possible solutions and better treatment. Internet of Things (IoT) in healthcare is the next-gen technologies which automate the healthcare facility by mobility solutions are discussed in detail. It also discusses hybrid AI with bio-inspired techniques, genetic algorithm, neuro-fuzzy algorithms, and soft computing approaches which significantly improves the prediction of critical cardiovascular abnormalities and other healthcare solutions to the ongoing challenging research.




Artificial Intelligence and Internet of Things


Book Description

This book reveals the applications of AI and IoT in smart healthcare and medical systems. It provides core principles, algorithms, protocols, emerging trends, security problems, and the latest e-healthcare services findings. The book also provides case studies and discusses how AI and IoT applications such as wireless devices, sensors, and deep learning could play a major role in assisting patients, doctors, and pharmaceutical staff. It focuses on how to use AI and IoT to keep patients safe and healthy and, at the same time, empower physicians to deliver superlative care. This book is written for researchers and practitioners working in the information technology, computer science, and medical equipment manufacturing industry for products and services having basic- and high-level AI and IoT applications. The book is also a useful guide for academic researchers and students.




Incorporating the Internet of Things in Healthcare Applications and Wearable Devices


Book Description

The internet of things (IoT) has had a major impact on academic and industrial fields. Applying these technologies to healthcare systems reduces medical costs while enriching the patient-centric approach to medicine, allowing for better overall healthcare proficiency. However, usage of IoT in healthcare is still suffering from significant challenges with respect to the cost and accuracy of medical sensors, non-standard IoT system architectures, assorted wearable devices, the huge volume of generated data, and interoperability issues. Incorporating the Internet of Things in Healthcare Applications and Wearable Devices is an essential publication that examines existing challenges and provides solutions for building smart healthcare systems with the latest IoT-enabled technology and addresses how IoT improves the proficiency of healthcare with respect to wireless sensor networks. While highlighting topics including mobility management, sensor integration, and data analytics, this book is ideally designed for computer scientists, bioinformatics analysts, doctors, nurses, hospital executives, medical students, IT specialists, software developers, computer engineers, industry professionals, academicians, researchers, and students seeking current research on how these emerging wireless technologies improve efficiency within the healthcare domain.




Internet of Things-Based Machine Learning in Healthcare


Book Description

The Internet of Medical Things (IoMT) is a system that collects data from patients with the help of different sensory inputs, e.g., an accelerometer, electrocardiography, and electroencephalography. This text presents both theoretical and practical concepts related to the application of machine learning and Internet of Things (IoT) algorithms in analyzing data generated through healthcare systems. Illustrates the latest technologies in the healthcare domain and the Internet of Things infrastructure for storing smart electronic health records Focuses on the importance of machine learning algorithms and the significance of Internet of Things infrastructure for healthcare systems Showcases the application of fog computing architecture and edge computing in novel aspects of modern healthcare services Discusses unsupervised genetic algorithm-based automatic heart disease prediction Covers Internet of Things–based hardware mechanisms and machine learning algorithms to predict the stress level of patients The text is primarily written for graduate students and academic researchers in the fields of computer science and engineering, biomedical engineering, electrical engineering, and information technology.




Artificial Intelligence for the Internet of Health Things


Book Description

This book discusses research in Artificial Intelligence for the Internet of Health Things. It investigates and explores the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in design, implementation, and optimization of challenging healthcare solutions. This book features a wide range of topics such as AI techniques, IoT, cloud, wearables, and secured data transmission. Written for a broad audience, this book will be useful for clinicians, health professionals, engineers, technology developers, IT consultants, researchers, and students interested in the AI-based healthcare applications. Provides a deeper understanding of key AI algorithms and their use and implementation within the wider healthcare sector Explores different disease diagnosis models using machine learning, deep learning, healthcare data analysis, including machine learning, and data mining and soft computing algorithms Discusses detailed IoT, wearables, and cloud-based disease diagnosis model for intelligent systems and healthcare Reviews different applications and challenges across the design, implementation, and management of intelligent systems and healthcare data networks Introduces a new applications and case studies across all areas of AI in healthcare data K. Shankar (Member, IEEE) is a Postdoctoral Fellow of the Department of Computer Applications, Alagappa University, Karaikudi, India. Eswaran Perumal is an Assistant Professor of the Department of Computer Applications, Alagappa University, Karaikudi, India. Dr. Deepak Gupta is an Assistant Professor of the Department Computer Science & Engineering, Maharaja Agrasen Institute of Technology (GGSIPU), Delhi, India.




Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics


Book Description

Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems




Integrating AI in IoT Analytics on the Cloud for Healthcare Applications


Book Description

Internet of things (IoT) applications employed for healthcare generate a huge amount of data that needs to be analyzed to produce the expected reports. To accomplish this task, a cloud-based analytical solution is ideal in order to generate faster reports in comparison to the traditional way. Given the current state of the world in which every day IoT devices are developed to provide healthcare solutions, it is essential to consider the mechanisms used to collect and analyze the data to provide thorough reports. Integrating AI in IoT Analytics on the Cloud for Healthcare Applications applies artificial intelligence (AI) in edge analytics for healthcare applications, analyzes the impact of tools and techniques in edge analytics for healthcare, and discusses security solutions for edge analytics in healthcare IoT. Covering topics such as data analytics and next generation healthcare systems, it is ideal for researchers, academicians, technologists, IT specialists, data scientists, healthcare industries, IoT developers, data security analysts, educators, and students.




Machine Learning for Healthcare Applications


Book Description

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.




Internet of Healthcare Things


Book Description

INTERNET OF HEALTHCARE THINGS The book addresses privacy and security issues providing solutions through authentication and authorization mechanisms, blockchain, fog computing, machine learning algorithms, so that machine learning-enabled IoT devices can deliver information concealed in data for fast, computerized responses and enhanced decision-making. The main objective of this book is to motivate healthcare providers to use telemedicine facilities for monitoring patients in urban and rural areas and gather clinical data for further research. To this end, it provides an overview of the Internet of Healthcare Things (IoHT) and discusses one of the major threats posed by it, which is the data security and data privacy of health records. Another major threat is the combination of numerous devices and protocols, precision time, data overloading, etc. In the IoHT, multiple devices are connected and communicate through certain protocols. Therefore, the application of emerging technologies to mitigate these threats and provide secure data communication over the network is discussed. This book also discusses the integration of machine learning with the IoHT for analyzing huge amounts of data for predicting diseases more accurately. Case studies are also given to verify the concepts presented in the book. Audience Researchers and industry engineers in computer science, artificial intelligence, healthcare sector, IT professionals, network administrators, cybersecurity experts.