Micro- and Nano-Structured Interpenetrating Polymer Networks


Book Description

This book examines the current state of the art, new challenges, opportunities, and applications of IPNs. With contributions from experts across the globe, this survey is an outstanding resource reference for anyone involved in the field of polymer materials design for advanced technologies. • Comprehensively summarizes many of the recent technical research accomplishments in the area of micro and nanostructured Interpenetrating Polymer Networks • Discusses various aspects of synthesis, characterization, structure, morphology, modelling, properties, and applications of IPNs • Describes how nano-structured IPNs correlate their multiscale structure to their properties and morphologies • Serves as a one-stop reference resource for important research accomplishments in the area of IPNs and nano-structured polymer systems • Includes chapters from leading researchers in the IPN field from industry, academy, government and private research institutions




Polymer Alloys II


Book Description

The term "alloy" as pertaining to polymers has become an increasingly popular description of composites of polymers, parti cularly since the publication of the first volume in this series in 1977. Polymer alloy refers to that class of macromolecular materials which, in general, consists of combinations of chemically different polymers. The polymers involved in these combinations may be hetero geneous (multiphase) or homogeneous (single phase). They may be linked together with covalent bonds between the component polymers (block copolymers, graft copolymers), linked topologically with no covalent bonds (interpenetrating polymer networks), or not linked at all except physically (polyblends). In addition, they may be linear (thermoplastic), crosslinked (thermosetting), crystalline, or amorphous, although the latter is more common. To the immense satisfaction - but not surprise - of the editors, there has been no decrease in the research and development of polymer alloys since the publication of the first volume, as evidenced by numerous publications, conferences and symposia. Continued advances in polymer technology caused by the design of new types of polymer alloys have also been noted. This technolog ical interest stems from the fact that these materials very often exhibit a synergism in properties achievable only by the formation of polymer alloys. The classic examples, of course, are the high impact plastics, which are either polyblends, block, or graft co polymers composed of a rubbery and a glassy polymer. Interpene trating polymer networks (IPN's) of such polymers also exhibit the same, or even greater, synergism.




Polymer Synthesis


Book Description

This revised and updated second edition of Polymer Syntheses, Volume I brings together useful preparative methods for polymers and resins by functional group type that are of interest to both academic and industrial researchers. Several new directions for polymerization procedures have been included and are organized by various methodologies. Tables of physical property data and preparations make this book a valuable addition to any research library or research group. Provides detailed directions for the synthesis of various functional groups Includes up-to-date references to the journal literature and patents (foreign and domestic) Reviews the chemistry for each functional group and suggests where additional research is needed




Drexel Polymer Notes


Book Description




Thermal Degradation of Polymer Blends, Composites and Nanocomposites


Book Description

This book delivers a deep insight into thermal polymer degradation features and put a particular emphasis on blends, composites and nanocomposites. It examines the thermal stability and the mechanism of degrading for every class of polymer substances and studies the effect on reinforcement to all classes. The book further explores the thermal stability when nano particles are added and summarizes the latest studies and application relevant results. This book offers a valuable reference source to graduate and post graduate students, engineering students, research scholars and polymer engineers from industry.




Introduction to Polymer Rheology and Processing


Book Description

An Introduction to Polymer Rheology and Processing is a practical desk reference providing an overview of operating principles, data interpretation, and qualitative explanation of the importance and relationship of rheology to polymer processing operations. It covers full-scale processing operations, relating industrial processing operations and design methodology to laboratory-scale testing. Hundreds of design formulas applicable to scaling up the processing behavior of polymeric melts are presented. The book also provides a "working knowledge" description of major rheological test methods useful in product development and includes a useful glossary of polymer and test method/instrumentation definitions. Lavishly illustrated and featuring numerous sample calculations and modeling approaches, An Introduction to Polymer Rheology and Processing is a "must have" book for polymer engineers and rheologists.