Interpreting and Visualizing Regression Models Using Stata


Book Description

Interpreting and Visualizing Regression Models Using Stata, Second Edition provides clear and simple examples illustrating how to interpret and visualize a wide variety of regression models. Including over 200 figures, the book illustrates linear models with continuous predictors (modeled linearly, using polynomials, and piecewise), interactions of continuous predictors, categorical predictors, interactions of categorical predictors, and interactions of continuous and categorical predictors. The book also illustrates how to interpret and visualize results from multilevel models, models where time is a continuous predictor, models with time as a categorical predictor, nonlinear models (such as logistic or ordinal logistic regression), and models involving complex survey data. The examples illustrate the use of the margins, marginsplot, contrast, and pwcompare commands. This new edition reflects new and enhanced features added to Stata, most importantly the ability to label statistical output using value labels associated with factor variables. As a result, output regarding marital status is labeled using intuitive labels like Married and Unmarried instead of using numeric values such as 1 and 2. All the statistical output in this new edition capitalizes on this new feature, emphasizing the interpretation of results based on variables labeled using intuitive value labels. Additionally, this second edition illustrates other new features, such as using transparency in graphics to more clearly visualize overlapping confidence intervals and using small sample-size estimation with mixed models. If you ever find yourself wishing for simple and straightforward advice about how to interpret and visualize regression models using Stata, this book is for you.




Interpreting and Visualizing Regression Models Using Stata


Book Description

"Event History Analysis With Stata" provides an introduction to event history modeling techniques using Stata (version 9), a widely used statistical program that provides tools for data analysis. The book emphasizes the usefulness of event history models for causal analysis in the social sciences and the application of continuous-time models. The authors illustrate the entire research path required in the application of event-history analysis, from the initial problems of recording event-oriented data, to data organization, to applications using the software, to the interpretation of results. The book also demonstrates, through example, how to implement hypotheses tests and how to choose the right model. The strengths and limitations of various techniques are emphasized in each example, along with an introduction to the model, details on how to input data, and the related Stata commands. Each application is accompanied by a brief explanation of the underlying statistical concept. Readers are offered the unique opportunity to easily run and modify all of the book's application examples on a computer, by visiting the author's Web site and includes survival rates of patients in medical studies; unemployment periods in economic studies; and the time it takes a criminal to break the law after his release in a criminological study. This new book supplements "Event History Analysis", by Blossfeld et al, and "Techniques of Event History Modeling", by Blossfeld and Rohwer, extending on their coverage of practical applications and statistical theory. Intended for researchers in a variety of fields such as statistics, economics, psychology, sociology, and political science, "Event History Analysis With Stata" also serves as a text, in combination with the authors' other two books, for courses on event history analysis.




A Visual Guide to Stata Graphics, Second Edition


Book Description

The Power of Stata Graphics at Your Fingertips Whether you are new to Stata graphics or a seasoned veteran, this book teaches you how to use Stata to make high-quality graphs that stand out and enhance statistical results. With over 900 illustrated examples and quick-reference tabs, it offers a guide to creating and customizing graphs for any type of statistical data using either Stata commands or the Graph Editor. The author displays each graph example in full color with simple and clear instructions. He shows how to produce various types of graph elements, including marker symbols, lines, legends, captions, titles, axis labels, and grid lines. Reflecting the new graphics features of Stata, this thoroughly updated and expanded edition contains a new chapter that explains how to exploit the power of the new Graph Editor. This edition also includes additional examples and illustrates nearly every example with the Graph Editor.




Applied Ordinal Logistic Regression Using Stata


Book Description

The first book to provide a unified framework for both single-level and multilevel modeling of ordinal categorical data, Applied Ordinal Logistic Regression Using Stata helps readers learn how to conduct analyses, interpret the results from Stata output, and present those results in scholarly writing. Using step-by-step instructions, this non-technical, applied book leads students, applied researchers, and practitioners to a deeper understanding of statistical concepts by closely connecting the underlying theories of models with the application of real-world data using statistical software. An open-access website for the book contains data sets, Stata code, and answers to in-text questions.







Data Management Using Stata


Book Description

This second edition of Data Management Using Stata focuses on tasks that bridge the gap between raw data and statistical analysis. It has been updated throughout to reflect new data management features that have been added over the last 10 years. Such features include the ability to read and write a wide variety of file formats, the ability to write highly customized Excel files, the ability to have multiple Stata datasets open at once, and the ability to store and manipulate string variables stored as Unicode. Further, this new edition includes a new chapter illustrating how to write Stata programs for solving data management tasks. As in the original edition, the chapters are organized by data management areas: reading and writing datasets, cleaning data, labeling datasets, creating variables, combining datasets, processing observations across subgroups, changing the shape of datasets, and programming for data management. Within each chapter, each section is a self-contained lesson illustrating a particular data management task (for instance, creating date variables or automating error checking) via examples. This modular design allows you to quickly identify and implement the most common data management tasks without having to read background information first. In addition to the "nuts and bolts" examples, author Michael Mitchell alerts users to common pitfalls (and how to avoid them) and provides strategic data management advice. This book can be used as a quick reference for solving problems as they arise or can be read as a means for learning comprehensive data management skills. New users will appreciate this book as a valuable way to learn data management, while experienced users will find this information to be handy and time saving--there is a good chance that even the experienced user will learn some new tricks.




A Practical Introduction to Regression Discontinuity Designs


Book Description

In this Element and its accompanying second Element, A Practical Introduction to Regression Discontinuity Designs: Extensions, Matias Cattaneo, Nicolás Idrobo, and Rocıìo Titiunik provide an accessible and practical guide for the analysis and interpretation of regression discontinuity (RD) designs that encourages the use of a common set of practices and facilitates the accumulation of RD-based empirical evidence. In this Element, the authors discuss the foundations of the canonical Sharp RD design, which has the following features: (i) the score is continuously distributed and has only one dimension, (ii) there is only one cutoff, and (iii) compliance with the treatment assignment is perfect. In the second Element, the authors discuss practical and conceptual extensions to this basic RD setup.




Stata for the Behavioral Sciences


Book Description

Stata for the Behavioral Sciences, by Michael Mitchell, is the ideal reference for researchers using Stata to fit ANOVA models and other models commonly applied to behavioral science data. Drawing on his education in psychology and his experience in consulting, Mitchell uses terminology and examples familiar to he reader as he demonstrates how to fit a variety of models, how to interpret results, how to understand simple and interaction effects, and how to explore results graphically. Although this book is not designed as an introduction to Stata, it is appealing even to Stata novices. Throughout the text, Mitchell thoughtfully addresses any features of Stata that are important to understand for the analysis at hand. He also is careful to point out additional resources such as related videos from Stata's YouTube channel. This book is an easy-to-follow guide to analyzing data using Stata for researchers in the behavioral sciences and a valuable addition to the bookshelf of anyone interested in applying ANOVA methods to a variety of experimental designs.




Interpretable Machine Learning


Book Description

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.




Bayesian Analysis with Stata


Book Description

Bayesian Analysis with Stata is a compendium of Stata user-written commands for Bayesian analysis.