Book Description
Neutrosophic sets are powerful logics designed to facilitate understanding of indeterminate and inconsistent information; many types of incomplete or complete information can be expressed as interval valued neutrosophic sets (IVNSs). This paper proposes improved aggregation operation rules for IVNSs, and extends the generalized weighted aggregation (GWA) operator to work congruently with IVNS data. The aggregated results are also expressed as IVNSs, which are characterized by truth membership degree, indeterminacy-membership degree, and falsity-membership degree. The proposed method is proved to be the maximum approximation to the original data, and maintains most of the information during data processing. Then, a method is proposed to determine the ranking orders for all alternatives according to their comparative advantage matrices based on their general score, degree of accuracy and degree of certainty expressed by the aggregated IVNSs. Finally, a numerical example is provided to illustrate the applicability and efficiency of the proposed approach.