Intracellular Delivery II


Book Description

This volume is a continuation of Volume 1 following the previously published Editorial. More emphasis is given to novel nanocarrier designs, their characterization and function, and applications for drug discovery and treatment. A number of chapters will deal with nanofibers as a new major application within the biomedical field with a very high success rate particularly in wound healing and diabetic foot and spine injuries. A major new subdivision will deal with mathematical methods for the assembly of nanocarriers both for simulation and function.




Engineering of Biomaterials for Drug Delivery Systems


Book Description

Engineering of Biomaterials for Drug Delivery Systems: Beyond Polyethylene Glycol examines the combined issues of PEGylation and viable biomaterials as alternatives. With a strong focus on polymeric biomaterials, the book first reviews the major issues associated with PEGylation and its use in vivo. Chapters then focus on alternative polymer systems for drug delivery systems. Finally, nanoparticles and future perspectives are examined. This book is a valuable resource for scientists and researchers in biomaterials, pharmaceuticals and nanotechnology, and all those who wish to broaden their knowledge in this field. Provides a self-contained work for the field of biomaterials for drug delivery Summarizes the current knowledge on PEGylation and strategies for bypassing it Presents research on an important, though under-represented issue in biomaterials Written by a world-class team of research scientists, engineers and clinicians




Smart Polymers and their Applications


Book Description

Smart polymers are polymers that respond to different stimuli or changes in the environment. Smart Polymers and their Applications reviews the types, synthesis, properties, and applications of smart polymers. Chapters in part one focus on types of polymers, including temperature-, pH-, photo-, and enzyme-responsive polymers. Shape memory polymers, smart polymer hydrogels, and self-healing polymer systems are also explored. Part two highlights applications of smart polymers, including smart instructive polymer substrates for tissue engineering; smart polymer nanocarriers for drug delivery; the use of smart polymers in medical devices for minimally invasive surgery, diagnosis, and other applications; and smart polymers for bioseparation and other biotechnology applications. Further chapters discuss the use of smart polymers for textile and packaging applications, and for optical data storage. Smart Polymers and their Applications is a technical resource for chemists, chemical engineers, mechanical engineers, and other professionals in the polymer industry; manufacturers in such sectors as medical, automotive, and aerospace engineering; and academic researchers in polymer science. Reviews the different types of smart polymer, discussing their properties, structure, design, and characterization Reviews applications of smart polymers in such areas as biomedical engineering, textiles, and food packaging




Drug Delivery Systems, Third Edition


Book Description

Drug delivery technologies represent a vast, vital area of research and development in pharmaceuticals. The demand for innovative drug delivery systems continues to grow, driving a variety of new developments. Drug Delivery Systems, Third Edition provides a comprehensive review of the latest research and development on drug delivery systems. Coverage includes liposomal, transmucosal, transdermal, oral, polymeric, and monoclonal antibody directed delivery. Each chapter provides a table of marketed and investigational products with numerous practical examples. The book also provides readers with a multitude of possible drug delivery systems that can be used to improve therapeutics, along with global and regulatory perspectives. This third edition contains a chapter on nanoscience and technology for drug delivery along with cutting-edge business intelligence and strategies. Written in a straightforward manner, the authors provide a global perspective on current and future advances and market opportunities. Supplying a cogent overview of the field and extensive guidance on where to get more information, it is an essential resource for anyone venturing into this area of drug development.




Bioinspired and Biomimetic Polymer Systems for Drug and Gene Delivery


Book Description

Here, front-line researchers in the booming field of nanobiotechnology describe the most promising approaches for bioinspired drug delivery, encompassing small molecule delivery, delivery of therapeutic proteins and gene delivery. The carriers surveyed include polymeric, proteinaceous and lipid systems on the nanoscale, with a focus on their adaptability for different cargoes and target tissues. Thanks to the broad coverage of carriers as well as cargoes discussed, every researcher in the field will find valuable information here.







Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications


Book Description

Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume Two: Advanced Nanocarriers for Therapeutics discusses, in detail, the recent trends in designing dual and multi-responsive polymers and nanoparticles for safe drug delivery. Chapters cover dual-responsive polymeric nanocarriers for drug delivery and their different stimuli, multi-responsive polymeric nanocarriers, and the therapeutic applications of stimuli-responsive polymers. With an emphasis on advanced medical applications and synergistic operational and technological methodologies for the improvement of polymers systems for the production of stimuli-responsive polymers, this book is essential reading for materials scientists and researchers working in the drug delivery and pharmaceutical industries. As innovation and development in the area of stimuli responsive polymer-based nanomaterials for drug delivery is moving fast and there is an increased global demand for biodegradable and biocompatible responsive polymers and nanoparticles for safe drug delivery, users will find this to be a timely resource. Focusses on the most advanced technologies, recent evaluation methods, technical aspects, and advanced synthesis techniques stimuli-responsive polymers Examines advanced medical applications of stimuli responsive polymers Analyzes synergistic operational and technological methodologies for the improvement of polymer systems for the production of stimuli-responsive polymers in drug delivery




Functional Materials from Colloidal Self-assembly


Book Description

A comprehensive resource for new and veteran researchers in the field of self-assembling and functional materials In Functional Materials from Colloidal Self-assembly, a pair of distinguished researchers delivers a thorough overview of how the colloidal self-assembly approach can enable the design and fabrication of several functional materials and devices. Among other topics, the book explores the foundations of self-assembly in different systems, nucleation, the growth of nanoparticles, self-assembly of colloidal microspheres for photonic crystals and devices, and the self-assembly of amphiphilic molecules as a template for mesoporous materials. The authors also discuss the self-assembly of biomolecules, superstructures from self-assembly, architectures from self-assembly, and the applications of self-assembled nanostructures. Functional Materials from Colloidal Self-assembly provides a balanced approach to the theoretical background and applications of the subject, offering sound guidance to both experienced and early-career researchers. The book also delivers: A thorough introduction to the fundamentals of colloids, including the theory of nucleation and the growth of colloidal particles Comprehensive explorations of mechanisms and strategies for the self-assembly of colloidal particles, including DNA-mediated colloidal self-assembly Practical discussions of characterization techniques for self-assembled colloidal structures, including electron microscopy techniques and X-ray techniques In-depth examinations of biological and biomedical materials, including tissue engineering, drug loading and release, and biodetection Perfect for materials scientists, inorganic chemists, and catalytic chemists, Functional Materials from Colloidal Self-assembly is also a must-read reference for biochemists and surface chemists seeking a one-stop resource on self-assembling and functional materials.




Intracellular Delivery


Book Description

This book features a special subsection of Nanomedicine, an application of nanotechnology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical and biological properties of materials only existent at the nanometer scale. As a consequence of small scale, nanosystems in most cases are efficiently uptaken by cells and appear to act at the intracellular level. Nanotechnology has the potential to improve diagnosis, treatment and follow-up of diseases, and includes targeted drug delivery and regenerative medicine; it creates new tools and methods that impact significantly upon existing conservative practices. This volume is a collection of authoritative reviews. In the introductory section we define the field (intracellular delivery). Then, the fundamental routes of nanodelivery devices, cellular uptake, types of delivery devices, particularly in terms of localized cellular delivery, both for small drug molecules, macromolecular drugs and genes; at the academic and applied levels, are covered. The following section is dedicated to enhancing delivery via special targeting motifs followed by the introduction of different types of intracellular nanodelivery devices (e.g. a brief description of their chemistry) and ways of producing these different devices. Finally, we put special emphasis on particular disease states and on other biomedical applications, whilst diagnostic and sensing issues are also included. Intracellular delivery / therapy is a highly topical which will stir great interest. Intracellular delivery enables much more efficient drug delivery since the impact (on different organelles and sites) is intracellular as the drug is not supplied externally within the blood stream. There is great potential for targeted delivery with improved localized delivery and efficacy.