Intrinsically Biocompatible Polymer Systems


Book Description

Biocompatibility refers to the ability of a biomaterial to perform its desired function with respect to a medical therapy, without eliciting any undesirable local or systemic effects in the recipient or beneficiary of that therapy, but generating the most appropriate beneficial cellular or tissue response in that specific situation, and optimizing the clinically relevant performance of that therapy, which reflects current developments in the area of intrinsically biocompatible polymer systems. Polymeric biomaterials are presently used as, for example, long-term implantable medical devices, degradable implantable systems, transient invasive intravascular devices, and, recently, as tissue engineering scaffolds. This Special Issue welcomes full papers and short communications highlighting the aspects of the current trends in the area of intrinsically biocompatible polymer systems.




Intrinsically Biocompatible Polymer Systems


Book Description

Biocompatibility refers to the ability of a biomaterial to perform its desired function with respect to a medical therapy, without eliciting any undesirable local or systemic effects in the recipient or beneficiary of that therapy, but generating the most appropriate beneficial cellular or tissue response in that specific situation, and optimizing the clinically relevant performance of that therapy, which reflects current developments in the area of intrinsically biocompatible polymer systems. Polymeric biomaterials are presently used as, for example, long-term implantable medical devices, degradable implantable systems, transient invasive intravascular devices, and, recently, as tissue engineering scaffolds. This Special Issue welcomes full papers and short communications highlighting the aspects of the current trends in the area of intrinsically biocompatible polymer systems.




Self-Healing Polymer-Based Systems


Book Description

Self-Healing Polymer-Based Systems presents all aspects of self-healing polymeric materials, offering detailed information on fundamentals, preparation methods, technology, and applications, and drawing on the latest state-of-the-art research. The book begins by introducing self-healing polymeric systems, with a thorough explanation of underlying concepts, challenges, mechanisms, kinetic and thermodynamics, and types of chemistry involved. The second part of the book studies the main categories of self-healing polymeric material, examining elastomer-based, thermoplastic-based, and thermoset-based materials in turn. This is followed by a series of chapters that examine the very latest advances, including nanoparticles, coatings, shape memory, self-healing biomaterials, ionomers, supramolecular polymers, photoinduced and thermally induced self-healing, healing efficiency, life cycle analysis, and characterization. Finally, novel applications are presented and explained. This book serves as an essential resource for academic researchers, scientists, and graduate students in the areas of polymer properties, self-healing materials, polymer science, polymer chemistry, and materials science. In industry, this book contains highly valuable information for R&D professionals, designers, and engineers, who are looking to incorporate self-healing properties in their materials, products, or components. - Provides comprehensive coverage of self-healing polymeric materials, covering principles, techniques, and applications - Includes the very latest developments in the field, such as the role of nanofillers in healing, life cycle analysis of materials, and shape memory assisted healing - Enables the reader to unlock the potential of self-healing polymeric materials for a range of advanced applications




Cutting-Edge Enabling Technologies for Regenerative Medicine


Book Description

This book explores in depth the latest enabling technologies for regenerative medicine. The opening section examines advances in 3D bioprinting and the fabrication of electrospun and electrosprayed scaffolds. The potential applications of intelligent nanocomposites are then considered, covering, for example, graphene-based nanocomposites, intrinsically conductive polymer nanocomposites, and smart diagnostic contact lens systems. The third section is devoted to various drug delivery systems and strategies for regenerative medicine. Finally, a wide range of future enabling technologies are discussed. Examples include temperature-responsive cell culture surfaces, nanopatterned scaffolds for neural tissue engineering, and process system engineering methodologies for application in tissue development. This is one of two books to be based on contributions from leading experts that were delivered at the 2018 Asia University Symposium on Biomedical Engineering in Seoul, Korea – the companion book examines in depth novel biomaterials for regenerative medicine.




Biomedical Polymers


Book Description

A review of the latest research on biomedical polymers, this book discusses natural, synthetic, biodegradable and non bio-degradable polymers and their applications. Chapters discuss polymeric scaffolds for tissue engineering and drug delivery systems, the use of polymers in cell encapsulation, their role as replacement materials for heart valves and arteries, and their applications in joint replacement. The book also discusses the use of polymers in biosensor applications. Edited by an expert team of reasearchers and containing contributions from pioneers throughout the field, the book is an essential reference for scientists and all those developing and using this important group of biomaterials.




Progress in Polymer Research for Biomedical, Energy and Specialty Applications


Book Description

With the rapid advancements in polymer research, polymers are finding newer applications such as scaffolds for tissue engineering, wound healing, flexible displays, and energy devices. In the same spirit, this book covers the key features of recent advancements in polymeric materials and their specialty applications. Divided into two sections – Polymeric Biomaterials and Polymers from Sustainable Resources, and Polymers for Energy and Specialty Applications – this book covers biopolymers, polymer-based biomaterials, polymer-based nanohybrids, polymer nanocomposites, polymer-supported regenerative medicines, and advanced polymer device fabrication techniques. FEATURES Provides a comprehensive review of all different polymers for applications in tissue engineering, biomedical implants, energy storage or conversion, and so forth Discusses advanced strategies in development of scaffolds for tissue engineering Elaborates various advanced fabrication techniques for polymeric devices Explores the nuances in polymer-based batteries and energy harvesting Reviews advanced polymeric membranes for fuel cells and polymers for printed electronics applications Throws light on some new polymers and polymer nanocomposites for optoelectronics, next generation tires, smart sensors and stealth technology applications This book is aimed at academic researchers, industry personnel, and graduate students in the interdisciplinary fields of polymer and materials technology, composite engineering, biomedical engineering, applied chemistry, chemical engineering, and advanced polymer manufacturing.




Intrinsically Conducting Polymers: An Emerging Technology


Book Description

This book contains the majority of the papers presented at the NATO Ad vanced Research Workshop (ARW) held in Burlington, Vermont, USA on October 12-15, 1992. This ARW was the first of its kind to address the subject of intrinsically conducting polymers with an emphasis on processing and technological applications. The NATO ARW format was followed in that the subjects addressed here were limited in number but discussed in detail with the attendance being limited to a small number of selected scientists. The ARW brought together lecturers who are leaders in their respective fields from a wide range of NATO and non-NATO countries (a total of 11 countries) with the support of the NATO Scientific Affairs Division and some support from Champlain Cable Corporation. The total number of par ticipants was 33 and the number of presentations was 24. The speakers were chosen based on the topics selected for this workshop and repre sented industry, universities and government laboratories. The field of conducting polymers has grown rapidly during the past few years with important developments in materials processing and fabrica tion that brought about active research programs focusing on the use of these polymers as "smart" materials in technological applications and devices in academic and industrial research laboratories.




The Complete Book on Biodegradable Plastics and Polymers (Recent Developments, Properties, Analysis, Materials & Processes)


Book Description

Biodegradable plastics made with plant based materials have been available for many years. The term biodegradable means that a substance is able to be broken down into simpler substances by the activities of living organisms, and therefore is unlikely to persist in the environment. There are many different standards used to measure biodegradability, with each country having its own. The requirements range from 90 per cent to 60 per cent decomposition of the product within 60 to 180 days of being placed in a standard composting environment. They may be composed of either bio plastics, which are plastics whose components are derived from renewable raw materials, or petroleum based plastics which contain additives. Biodegradability of plastics is dependent on the chemical structure of the material and on constitution of the final product, not just on the raw materials used for its production. Polyesters play a predominant role as biodegradable plastics due to their potentially hydrolysable ester bonds. Bio based polymers are divided into three categories based on their origin and production; polymer directly extracted from biomass, polymers produced by classical chemical synthesis using renewable biomass monomer and polymers produces by microorganisms or genetically modified bacteria. In response to public concern about the effects of plastics on the environment and in particular the damaging effects of sea litter on animals and birds, legislation is being enacted or is pending in many countries to ban non degradable packing, finishing nets etc. This book basically deals with biodegradable plastics developments and environmental impacts, hydro biodegradable and photo biodegradable, starch synthetic aliphatic polyester blends, difference between standards for biodegradation, polybutylene succinate (pbs) and polybutylene, recent developments in the biopolymer industry, recent advances in synthesis of biopolymers by traditional methodologies, polymers, environmentally degradable synthetic biodegradable polymers as medical devices, polymers produced from classical chemical synthesis from bio based monomers, potential bio based packaging materials, conventional packaging materials, environmental impact of bio based materials: biodegradability and compostability, etc. Environmentally acceptable degradable polymers have been defined as polymers that degrade in the environment by several mechanisms and culminate in complete biodegradation so that no residue remains in the environment. The present book gives thorough information to biodegradable plastic and polymers. This is an excellent book for scientists engineers, students and industrial researchers in the field of bio based materials. TAGS Bioplastics and Biodegradable Plastics, Biodegradable Plastics and Polymers, Biodegradable Products, Biodegradable Plastics from Waste, How to Make Biodegradable Plastic, Biodegradable Plastic Bags, Biodegradable Plastic Bottles, Biodegradable Plastic Manufacture, Producing Biodegradable Plastic, Starch-Based Biodegradable Plastics, Biodegradable Plastic Packaging, Bio-Based Biodegradable Plastics, Biobased and Biodegradable Plastic, Biodegradable Polymers, Biodegradable Polymers Plastic, Biodegradable Polymer Materials, Synthetic Biodegradable Polymers, Biograde Biodegradable Polymers, Production of Biodegradable Polymers, Degradation of Biodegradable Polymers, Starch Based Bio-Plastics, Biodegradable Polyesters, Polyester-Based (Bio)Degradable Polymers, Polyhydroxyalkanoates, PHBH Polyesters, PLA Polyesters, Degradation Mechanism, Coated Paper, Agricultural Mulch Film, Shopping Bags, Plastic Sorting and Reprocessing, Biopolymer Industry, Industrial Biopolymer, Fiber-Reinforced Composites, Natural Polymers, Environmentally Degradable Polymers, Production of Environmentally Degradation Polymers, Synthetic Biodegradable Polymers as Medical Devices, Natural and Synthetic Biodegradable Polymers, Degradation of Commercial Biodegradable, Commercial Biodegradable Material, Biobased Packaging Materials for Food Industry, Bio Food Packaging, Compostable Packaging Bio Based Materials, Production of Biobased Products, Plastics from Potato Waste, Biodegradable Plastics from Potato Waste, Carbohydrate-Based Polymers, Synthesis of Carbohydrate Based Polymers, Synthesis and Polymerization of Anhydro Sugars, Polymerization of Anhydro Sugar, Fungal Degradation of Carbohydrate Linked Polystyrenes, Polyester Film Manufacturing, PET Film & Polyester Film, Casting, Drawing, Slitting and Winding, Coating, Production of Multilayer Co-Injection, Co-Injection Molding, Injection Blow Molding, Injection and Co-Injection Preform, NPCS, Niir, Process Technology Books, Business Consultancy, Business Consultant, Project Identification and Selection, Preparation of Project Profiles, Startup, Business Guidance, Business Guidance to Clients, Startup Project, Startup Ideas, Project For Startups, Startup Project Plan, Business Start-Up, Business Plan for Startup Business, Great Opportunity For Startup, Small Start-Up Business Project, Best Small and Cottage Scale Industries, Startup India, Stand Up India, Small Scale Industries, New Small Scale Ideas for Bioplastics and Biodegradable Plastics Industry, Biodegradable Polymers Business Ideas you can start on your own, Indian Biodegradable Polymers Industry, Small Scale Biodegradable Plastics Industry, Guide to Starting and Operating Small Business, Business Ideas for Biodegradable Plastics, How to Start Biodegradable Plastics Business, Starting Biodegradable Polymers Industry, Start your own Biodegradable Plastics Business, Biodegradable Plastics Business Plan, Business Plan for Biodegradable Plastics, Small Scale Industries in India, Biodegradable Polymers Based Small Business Ideas in India, Small Scale Industry you can start on your own, Business Plan for Small Scale Industries, Set Up Biodegradable Plastics, Profitable Small Scale Manufacturing, How to Start Small Business in India, Free Manufacturing Business Plans




Antimicrobial Stewardship


Book Description

Over the past many years, new and novel antibiotics have been developed against resistant bacterial species, but their increased clinical usage has led to reduced bacterial susceptibility and increased bacterial resistance to these novel agents. When a new antibiotic is developed, bacterial species initially show susceptibility to the agent, but with the passage of time, as the use of the antibiotic increases, the bacterial species acquire resistance against the drug or even the drug class. This book provides a comprehensive overview of antimicrobial stewardship programs and the obstacles to implementing and maintaining such programs. Antimicrobial stewardship is an important part of a multifaceted approach to preventing the emergence of antibiotic resistance in various microbial species. The book highlights the basic and initial steps necessary for initiating an antimicrobial stewardship program, as well as explores the different strategies of antimicrobial stewardship.




Single-Chain Polymer Nanoparticles


Book Description

This first book on this important and emerging topic presents an overview of the very latest results obtained in single-chain polymer nanoparticles obtained by folding synthetic single polymer chains, painting a complete picture from synthesis via characterization to everyday applications. The initial chapters describe the synthetics methods as well as the molecular simulation of these nanoparticles, while subsequent chapters discuss the analytical techniques that are applied to characterize them, including size and structural characterization as well as scattering techniques. The final chapters are then devoted to the practical applications in nanomedicine, sensing, catalysis and several other uses, concluding with a look at the future for such nanoparticles. Essential reading for polymer and materials scientists, materials engineers, biochemists as well as environmental chemists.