Intrinsically Conducting Polymers: An Emerging Technology


Book Description

This book contains the majority of the papers presented at the NATO Ad vanced Research Workshop (ARW) held in Burlington, Vermont, USA on October 12-15, 1992. This ARW was the first of its kind to address the subject of intrinsically conducting polymers with an emphasis on processing and technological applications. The NATO ARW format was followed in that the subjects addressed here were limited in number but discussed in detail with the attendance being limited to a small number of selected scientists. The ARW brought together lecturers who are leaders in their respective fields from a wide range of NATO and non-NATO countries (a total of 11 countries) with the support of the NATO Scientific Affairs Division and some support from Champlain Cable Corporation. The total number of par ticipants was 33 and the number of presentations was 24. The speakers were chosen based on the topics selected for this workshop and repre sented industry, universities and government laboratories. The field of conducting polymers has grown rapidly during the past few years with important developments in materials processing and fabrica tion that brought about active research programs focusing on the use of these polymers as "smart" materials in technological applications and devices in academic and industrial research laboratories.




PEDOT


Book Description

While there is information available in handbooks on polythiophene chemistry and physics, until now, few if any books have focused exclusively on the most forwardly developed electrically conductive polymer, Poly (3,4-ethylenedioxythiophene)-otherwise known as PEDOT. This resource provides full chemical, physical, and technical information about this important conducting polymer, discussing basic knowledge and exploring its technical applications. Presented information is based on information generated at universities and through academic research, as well as by industrial scientists, providing a complete picture of the experimental and the practical aspects of this important polymer.




Corrosion Protection of Metals by Intrinsically Conducting Polymers


Book Description

The use of conducting polymers for the anticorrosion protection of metals has attracted great interest during the last 30 years. The design and development of conducting polymers-based coating systems with commercial viability is expected to be advanced by applying nanotechnology and has received substantial attention recently. This book begins wit




Conducting Polymers


Book Description

This book is a systematic survey of the knowledge accumulated in this field in the last thirty years. It includes material on the thermodynamic aspects of the polymers, the theory of the mechanism of charge transport processes, and the chemical and physical properties of these compounds. Also covered are the techniques of characterization, the electrochemical methods of synthesis, and the application of these systems. Inzelt’s book is a must-read for electrochemists and others.




Recent Advances in Intrinsically Conducting Polymers and Composites


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Doping in Conjugated Polymers


Book Description

An A-to-Z of doping including its definition, its importance, methods of measurement, advantages and disadvantages, properties and characteristics—and role in conjugated polymers The versatility of polymer materials is expanding because of the introduction of electro-active behavior into the characteristics of some of them. The most exciting development in this area is related to the discovery of intrinsically conductive polymers or conjugated polymers, which include such examples as polyacetylene, polyaniline, polypyrrole, and polythiophene as well as their derivatives. "Synmet" or "synthetic metal" conjugated polymers, with their metallic characteristics, including conductivity, are of special interest to researchers. An area of limitless potential and application, conjugated polymers have sparked enormous interest, beginning in 2000 when the Nobel Prize for the discovery and development of electrically conducting conjugated polymers was awarded to three scientists: Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa. Conjugated polymers have a combination of properties—both metallic (conductivity) and polymeric; doping gives the conjugated polymer's semiconducting a wide range of conductivity, from insulating to low conducting. The doping process is a tested effective method for producing conducting polymers as semiconducting material, providing a substitute for inorganic semiconductors. Doping in Conjugated Polymers is the first book dedicated to the subject and offers a comprehensive A-to-Z overview. It details doping interaction, dopant types, doping techniques, and the influence of the dopant on applications. It explains how the performance of doped conjugated polymers is greatly influenced by the nature of the dopants and their level of distribution within the polymer, and shows how the electrochemical, mechanical, and optical properties of the doped conjugated polymers can be tailored by controlling the size and mobility of the dopants counter ions. The book also examines doping at the nanoscale, in particular, with carbon nanotubes. Readership The book will interest a broad range of researchers including chemists, electrochemists, biochemists, experimental and theoretical physicists, electronic and electrical engineers, polymer and materials scientists. It can also be used in both graduate and upper-level undergraduate courses on conjugated polymers and polymer technology.




Electrical Conductive Adhesives with Nanotechnologies


Book Description

“Electrical Conductive Adhesives with Nanotechnologies” begins with an overview of electronic packaging and discusses the various adhesives options currently available, including lead-free solder and ECAs (Electrically Conductive Adhesives). The material presented focuses on the three ECA categories specifically, Isotropically Conductive Adhesives (ICAs) Anisotropically Conductive Adhesives/Films (ACA/ACF) and Nonconductive Adhesives/Films (NCA/NCF). Discussing the advantages and limitations of each technique, and how each technique is currently applied. Lastly, a detailed presentation of how nano techniques can be applied to conductive adhesives is discussed, including recent research and development of nano component adhesives/nano component films, their electrical properties, thermal performance, bonding pressure and assembly and reliability.




Fundamentals and Emerging Applications of Polyaniline


Book Description

Fundamentals and Emerging Applications of Polyaniline presents in-depth coverage of synthetic routes, characterization tools, experimental procedures, and the preparation of PANI-based materials for advanced applications. Sections examine the various synthetic routes available for the polymerization of aniline, covering both conventional methods and new approaches, specific PANI-based materials, and their potential applications. Users will be able to understand how to use these methods in areas such as electromagnetic interference shielding, rechargeable batteries, light emitting diodes, super capacitors, anti-static packaging and coatings, photonics, biomedical applications, chemical and biochemical sensors. This is a highly valuable source of information for researchers, scientists and graduate students in polymer science, polymer composites, polymer chemistry, nanotechnology, physics and materials science. - Covers the latest synthetic approaches, such as ultrasound-assisted polymerization, irradiation path and electrochemical polymerization - Offers detailed information on PANI-based composites, including graphene, CNT and functionalized polyaniline - Explains how different PANI-based materials can be geared for specific cutting-edge applications across a range of fields




Conductive Polymers and Plastics


Book Description

This book is a collection of papers by individuals in industry and academia on research and application development of conductive polymers and plastics. Conductive plastics are positioned to play an increasingly important role in affairs of mankind, specifically in the area of electrical and electronic conductivity. While general knowledge about conductive polymers and plastics has been available for many years, a true understanding of their application has only taken place in the last 3 to 4 years. This is attributed to advances in materials and processing techniques. Engineers have only begun to explore the design freedom and economic benefits of specifying conductive polymers and plastics in industrial and business applications.This book is a key reference and guide to the use of conductive polymers and plastics. It is a summary of existing technologies, but also a look at future possibilities.




Aspects on Fundaments and Applications of Conducting Polymers


Book Description

Since the establishment of the conductive properties of intrinsic conductive polymers, a huge variety of basic and applied research has been carried out, involving different polymers, copolymers, blends, mixtures and composites. Thus, fundamental understanding of physical and chemical properties of these materials has been sought, while the applied aspects have advanced very rapidly, crossing the boundaries between disciplines. Today, the applications of conducting polymers in various fields such as neuroscience, nanotechnology and green chemistry, are easily found. This development is dynamic and it needs to be updated and hence the motivation for the set of results presented in this book; which provides information about the development of fundamentals, and about some applications of conductive polymers.