Powered Flight


Book Description

Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ensure that the content is clear, representative but also interesting the text is complimented by a range of relevant graphs and photographs including representative engineering, in addition to several propeller performance charts. These items provide excellent reference and support materials for graduate and undergraduate projects and exercises. Students in the field of aerospace engineering will find that Powered Flight - The Engineering of Aerospace Propulsion supports their studies from the introductory stage and throughout more intensive follow-on studies.




Aerospace Propulsion Systems


Book Description

Aerospace Propulsion Systems is a unique book focusing on each type of propulsion system commonly used in aerospace vehicles today: rockets, piston aero engines, gas turbine engines, ramjets, and scramjets. Dr. Thomas A. Ward introduces each system in detail, imparting an understanding of basic engineering principles, describing key functionality mechanisms used in past and modern designs, and provides guidelines for student design projects. With a balance of theory, fundamental performance analysis, and design, the book is specifically targeted to students or professionals who are new to the field and is arranged in an intuitive, systematic format to enhance learning. Covers all engine types, including piston aero engines Design principles presented in historical order for progressive understanding Focuses on major elements to avoid overwhelming or confusing readers Presents example systems from the US, the UK, Germany, Russia, Europe, China, Japan, and India Richly illustrated with detailed photographs Cartoon panels present the subject in an interesting, easy-to-understand way Contains carefully constructed problems (with a solution manual available to the educator) Lecture slides and additional problem sets for instructor use Advanced undergraduate students, graduate students and engineering professionals new to the area of propulsion will find Aerospace Propulsion Systems a highly accessible guide to grasping the key essentials. Field experts will also find that the book is a very useful resource for explaining propulsion issues or technology to engineers, technicians, businessmen, or policy makers. Post-graduates involved in multi-disciplinary research or anybody interested in learning more about spacecraft, aircraft, or engineering would find this book to be a helpful reference. Lecture materials for instructors available at www.wiley.com/go/wardaero




Introduction to Aerospace Propulsion


Book Description

This work introduces students to the amazing and impressive expanse of propulsion systems used in aeronautics and aerospace, ranging from the piston engine and propeller to the rocket. Many examples and problems are included to illustrate the principles common to all propulsion types. Through this approach, students can develop an understanding of the reasons for trends and limitations in design and performance as well as explore the similarities between the types. Intended for use as an undergraduate text, this work should also be a useful reference for practising engineers.




Aerospace Propulsion


Book Description

Aerospace propulsion devices embody some of the most advanced technologies, ranging from materials, fluid control, and heat transfer and combustion. In order to maximize the performance, sophisticated testing and computer simulation tools are developed and used. Aerospace Propulsion comprehensively covers the mechanics and thermal-fluid aspects of aerospace propulsion, starting from the fundamental principles, and covering applications to gas-turbine and space propulsion (rocket) systems. It presents modern analytical methods using MATLAB and other advanced software and includes essential elements of both gas-turbine and rocket propulsion systems. Gas turbine coverage includes thermodynamic analysis, turbine components, diffusers, compressors, turbines, nozzles, compressor-turbine matching, combustors and afterburners. Rocket coverage includes chemical rockets, electrical rockets, nuclear and solar sail. Key features: Both gas-turbine and rocket propulsion covered in a single volume Presents modern analytical methods and examples Combines fundamentals and applications, including space applications Accompanied by a website containing MATLAB examples, problem sets and solutions Aerospace Propulsion is a comprehensive textbook for senior undergraduate graduate and aerospace propulsion courses, and is also an excellent reference for researchers and practicing engineers working in this area.




Airbreathing Propulsion


Book Description

Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data have on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.




Introduction to Aerospace Engineering with a Flight Test Perspective


Book Description

Comprehensive textbook which introduces the fundamentals of aerospace engineering with a flight test perspective Introduction to Aerospace Engineering with a Flight Test Perspective is an introductory level text in aerospace engineering with a unique flight test perspective. Flight test, where dreams of aircraft and space vehicles actually take to the sky, is the bottom line in the application of aerospace engineering theories and principles. Designing and flying the real machines are often the reasons that these theories and principles were developed. This book provides a solid foundation in many of the fundamentals of aerospace engineering, while illuminating many aspects of real-world flight. Fundamental aerospace engineering subjects that are covered include aerodynamics, propulsion, performance, and stability and control. Key features: Covers aerodynamics, propulsion, performance, and stability and control. Includes self-contained sections on ground and flight test techniques. Includes worked example problems and homework problems. Suitable for introductory courses on Aerospace Engineering. Excellent resource for courses on flight testing. Introduction to Aerospace Engineering with a Flight Test Perspective is essential reading for undergraduate and graduate students in aerospace engineering, as well as practitioners in industry. It is an exciting and illuminating read for the aviation enthusiast seeking deeper understanding of flying machines and flight test.




Introduction to Aerospace Materials


Book Description

The structural materials used in airframe and propulsion systems influence the cost, performance and safety of aircraft, and an understanding of the wide range of materials used and the issues surrounding them is essential for the student of aerospace engineering.Introduction to aerospace materials reviews the main structural and engine materials used in aircraft, helicopters and spacecraft in terms of their production, properties, performance and applications.The first three chapters of the book introduce the reader to the range of aerospace materials, focusing on recent developments and requirements. Following these introductory chapters, the book moves on to discuss the properties and production of metals for aerospace structures, including chapters covering strengthening of metal alloys, mechanical testing, and casting, processing and machining of aerospace metals. The next ten chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys, as well as the properties and processing of polymers, composites and wood. Chapters on performance issues such as fracture, fatigue and corrosion precede a chapter focusing on inspection and structural health monitoring of aerospace materials. Disposal/recycling and materials selection are covered in the final two chapters.With its comprehensive coverage of the main issues surrounding structural aerospace materials,Introduction to aerospace materials is essential reading for undergraduate students studying aerospace and aeronautical engineering. It will also be a valuable resource for postgraduate students and practising aerospace engineers. - Reviews the main structural and engine materials used in aircraft, helicopters and space craft in terms of their properties, performance and applications - Introduces the reader to the range of aerospace materials, focusing on recent developments and requirements, and discusses the properties and production of metals for aerospace structures - Chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys




Introduction to Aeronautics


Book Description




AIRCRAFT PROPULSION


Book Description

With the changing technological environment, the aircraft industry has experienced an exponential growth. Owing to the escalating use of aircrafts nowadays, it is required for the professionals and learners of the field to have conceptual understanding of propulsion systems and ability to apply these concepts in a way to develop aircrafts that make them fly further, higher and faster. Designed as a text for the undergraduate students of Aerospace and Aeronautical Engineering, the book covers all the basic concepts relating to propulsion in a clear and concise manner. Primary emphasis is laid on making the understanding of theoretical concepts as simple as possible by using lucid language and avoiding much complicated mathematical derivations. Thus, the book presents the concepts of propulsion in a style that even the beginners can understand them easily. The text commences with the basic pre-requisites for propulsion system followed by the fundamental thermodynamic aspects, laws and theories. Later on, it explains the gas turbine engine followed by rocket engine and ramjet engine. Finally, the book discusses the introductory part of an advanced topic, i.e., pulse detonation engine. KEY FEATURES OF THE BOOK • Coverage of all major types of propulsion systems • Focus on specific systems and sub-systems of gas turbine engine in individual chapters • Possesses pedagogical features like chapter-end important questions and suggested readings




Theory of Aerospace Propulsion


Book Description

Theory of Aerospace Propulsion, Second Edition, teaches engineering students how to utilize the fundamental principles of fluid mechanics and thermodynamics to analyze aircraft engines, understand the common gas turbine aircraft propulsion systems, be able to determine the applicability of each, perform system studies of aircraft engine systems for specified flight conditions and preliminary aerothermal design of turbomachinery components, and conceive, analyze, and optimize competing preliminary designs for conventional and unconventional missions. This updated edition has been fully revised, with new content, new examples and problems, and improved illustrations to better facilitate learning of key concepts. - Includes broader coverage than that found in most other books, including coverage of propellers, nuclear rockets, and space propulsion to allows analysis and design of more types of propulsion systems - Provides in-depth, quantitative treatments of the components of jet propulsion engines, including the tools for evaluation and component matching for optimal system performance - Contains additional worked examples and progressively challenging end-of- chapter exercises that provide practice for analysis, preliminary design, and systems integration