Introduction To Bioceramics, An (2nd Edition)


Book Description

This is the second edition of the classic book An Introduction to Bioceramics which provides a comprehensive overview of all types of ceramic and glass materials that are used in medicine and dentistry. The enormous growth of the field of bioceramics is due to the recognition by the medical and dental community of the importance of bioactive materials to stimulate repair and regeneration of tissues. This edition includes 21 new chapters that document the science and especially the clinical applications of the new generation of bioceramics in the field of tissue regeneration and repair. Important socioeconomic factors influencing the economics and availability of new medical treatments are covered with updates on regulatory procedures for new biomaterials, methods for technology transfer and ethical issues.The book contains 42 chapters that offer the only comprehensive treatment of the science, technology and clinical applications of all types of bioceramic materials used in medicine and dentistry. Each chapter is written by leaders in their specialized fields and is a thorough review of the subject matter, unlike many conference proceedings. All chapters have been edited to reflect the same writing style, making the book an easy read. The completeness of treatment of all types of bioceramics and their clinical applications makes the book unique in the field and invaluable to all readers.




Biomaterials Fabrication and Processing Handbook


Book Description

This volume focuses on a variety of production and processing aspects of the latest biomaterials. It discusses how scaffolds are used in tissue engineering and describes common implant materials, such as hard tissue, blood contacting, and soft tissue. The book also examines the important role nanotechnology plays in the preparation of drugs, protein delivery, tissue engineering, cardiovascular biomaterials, hard tissue replacements, biosensors, and bio-MEMS. With contributions from renowned international experts and extensive reference lists in each chapter, this book provides detailed, practical information to produce biomaterials and employ them in biomedicine.




Advanced Bioceramics


Book Description

Advanced Bioceramics: Properties, Processing, and Applications describes development of bioceramics and biocomposites, which are used in various biomedical applications including bone tissue repair, remodelling and regeneration. It covers the fundamental aspects of materials science and bioengineering, clinical performance in a variety of applications, ISO/ASTM specifications, and opportunities and challenges. Offers a comprehensive view of properties and processing of bioceramics Highlights applications in dentistry, orthopaedic and maxillofacial implants, and regenerative and tissue engineering Covers ISO/ASTM specifications such as processing, clinical applications, recycling/reuse and disposal standards Explores health, environmental and ethical issues With contributions from eminent editors and recognized authors around the world, this book should serve as an important reference for academics, scientists, researchers, students and practitioners in materials science and biomedical engineering. It is to assist in the design of novel, targeted and personalised bioceramic-based solutions to advanced healthcare.




Materials for Medical Application


Book Description

This book gives an introduction to the highly interdisciplinary field of biomaterials. It concisely summarizes properties, synthesis and modification of materials such as metals, ceramics, polymers or composites. Characterization, in vitro and in vivo testing as well as a selection of various applications are also part of this inevitable guide.




Encyclopedia of Biomaterials and Biomedical Engineering


Book Description

Written by more than 400 subject experts representing diverse academic and applied domains, this multidisciplinary resource surveys the vanguard of biomaterials and biomedical engineering technologies utilizing biomaterials that lead to quality-of-life improvements. Building on traditional engineering principles, it serves to bridge advances in materials science, life sciences, nanotechnology, and cell biology to innovations in solving medical problems with applications in tissue engineering, prosthetics, drug delivery, biosensors, and medical devices. In nearly 300 entries, this four-volume Encyclopedia of Biomaterials and Biomedical Engineering, Second Edition, covers: essential topics integral to tissue engineering research: bioreactors, scaffolding materials and fabrication, tissue mechanics, cellular interaction, and development of major tissues and organs being attempted by researchers worldwide; artificial lungs and muscles, bio-artificial livers, and corneal, dental, inner ear, and total hip implants; tissue engineering of blood vessels, heart valves, ligaments, microvascular networks, skeletal muscle, and skin; bone remodeling, bone cement, and bioabsorbable bone plates and screws; controlled drug delivery, insulin delivery, and transdermal and ocular implant-based drug delivery; endovascular stent grafts, vascular grafts, and xenografts; 3-D medical imaging, electrical impedance imaging, and intravascular ultrasound; biomedical, protein adsorption, and in vivo cardiovascular modeling; polymer foams, biofunctional and conductive polymers, and electroactive polymeric materials; blood–material interactions, the bone–implant interface, host reactions, and foreign body responses and much more.




Eco-Friendly Nano-Hybrid Materials for Advanced Engineering Applications


Book Description

This new book focuses on eco-friendly nanohybrid. It clearly summarizes the fundamentals and established techniques of synthesis and processing of eco-friendly nanohybrid materials to provide a systematic and coherent picture of synthesis and the processing of nanomaterials. The research on nanotechnology is evolving and expanding very rapidly. Nanotechnology represents an emerging technology that has the potential to have an impact on an incredibly wide number of industries, such as the medical, environmental, and pharmaceutical industries. There is a growing need to develop environmentally friendly processes for corrosion control that do not employ toxic chemicals. This book helps to fill this need. This volume is a comprehensive compilation of several trending research topics, such as fouling, energy-storing devices, water treatment, corrosion, biomaterials, and high performance materials. The topics are approached in an encompassing manner, covering the basics and the recent trends in this area, clearly defining the problems and suggesting potential solutions. Topics in the book include: Synthesis of complex polymer intermediates Synthesis of nanoparticles and nanofibers Binding interaction between nano- and micromaterials Fabrication of polymer nanocomposites Making of functionally terminated nanohybrid coatings Development of corrosion resistant coatings Antifouling coatings Bioceramic materials Materials for therapeutic and aesthetic applications Eco-Friendly Nano-Hybrid Materials for Advanced Engineering Applications will benefit a wide variety of those in this field, including: Shipping and coating industries encountering fouling problems Innovators in the field of energy storage and electrical equipment Developers of efficient water treatment systems Biomedical industries looking for novel bio-compatible materials Industries seeking high performance epoxy-based materials needed for specific applications




Bioceramic Coatings for Medical Implants


Book Description

Reflecting the progress in recent years, this book provides in-depth information on the preparation, chemistry, and engineering of bioceramic coatings for medical implants. It is authored by two renowned experts with over 30 years of experience in industry and academia, who know the potentials and pitfalls of the techniques concerned. Following an introduction to the principles of biocompatibility, they present the structures and properties of various bioceramics from alumina to zirconia. The main part of the work focuses on coating technologies, such as chemical vapor deposition, sol-gel deposition and thermal spraying. There then follows a discussion of the major interactions of bioceramics with bone or tissue cells, complemented by an overview of the in-vitro testing methods of the biomineralization properties of bioceramics. The text is rounded off by chapters on the functionalization of bioceramic coatings and a look at future trends. As a result, the authors bring together all aspects of the latest techniques for designing, depositing, testing, and implementing improved and novel bioceramic coating compositions, providing a full yet concise overview for beginners and professionals.




Ceramic Materials


Book Description

Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, comprehensive text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties of ceramic materials, students are shown how these materials are processed for a wide diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text, and a chapter is devoted to ceramics as gemstones. This course-tested text now includes expanded chapters on the role of ceramics in industry and their impact on the environment as well as a chapter devoted to applications of ceramic materials in clean energy technologies. Also new are expanded sets of text-specific homework problems and other resources for instructors. The revised and updated Second Edition is further enhanced with color illustrations throughout the text.




Green Polymer Composites Technology


Book Description

This book is a comprehensive introduction to "green" or environmentally friendly polymer composites developed using renewable polymers of natural origin such as starch, lignin, cellulose acetate, poly-lactic acid (PLA), polyhydroxylalkanoates (PHA), polyhydroxylbutyrate (PHB), etc., and the development of modern technologies for preparing green composites with various applications. The book also discusses major applications of green polymer composites in industries such as medicine, biotechnology, fine chemicals and engineering.




3D Printing in Oral Health Science


Book Description

This book on 3D printing in oral health science aims to equip the reader with a sound understanding of contemporary clinical applications in all fields of dentistry and their future directions. In the last few years, the development of 3D printing for medical and dental applications has increased tremendously. Advancements in 3D printing create the possibility of customized products, savings on small-scale productions, ease of sharing and processing of patient image data, and educational up-gradation. Looking at the dental specialties, it is evident that 3D printing has applications in all aspects of oral health science including prosthodontics, oral surgery, periodontics, endodontics, and orthodontics. This book will cover all major fields in dentistry and will help the practitioner in the process of decision-making and apply concepts in clinical or laboratory practice. It is based on current scientific evidence to provide readers with an up-to-date contemporary understanding of the subject, both from the clinical and the technological side. The book is a valuable asset for all who specialize in 3D printing and for those interested in learning more about this field.