Introduction to Biomedical Engineering Technology


Book Description

This new edition provides major revisions to a text that is suitable for the introduction to biomedical engineering technology course offered in a number of technical institutes and colleges in Canada and the US. Each chapter has been thoroughly updated with new photos and illustrations which depict the most modern equipment available in medical technology. This third edition includes new problem sets and examples, detailed block diagrams and schematics and new chapters on device technologies and information technology.




Introduction to Biomedical Equipment Technology


Book Description

Since the publication of Carr and Brown's biomedical equipment text more than ten years ago, it has become the industry standard. Now, this completely revised second edition promises to set the pace for modern biomedical equipment technology.




Introduction to Biomedical Engineering


Book Description

Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics.* 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use




Introduction to Biomedical Instrumentation


Book Description

This book is designed to introduce the reader to the fundamental information necessary for work in the clinical setting, supporting the technology used in patient care. Beginning biomedical equipment technologists can use this book to obtain a working vocabulary and elementary knowledge of the industry. Content is presented through the inclusion of a wide variety of medical instrumentation, with an emphasis on generic devices and classifications; individual manufacturers are explained only when the market is dominated by a particular unit. Designed for the reader with a fundamental understanding of anatomy, physiology, and medical terminology appropriate for their role in the health care field and assumes the reader's understanding of electronic concepts, including voltage, current, resistance, impedance, analog and digital signals, and sensors. The material covered will assist the reader in the development of his or her role as a knowledgeable and effective member of the patient care team.




Biomedical Engineering Design


Book Description

Biomedical Engineering Design presents the design processes and practices used in academic and industry medical device design projects. The first two chapters are an overview of the design process, project management and working on technical teams. Further chapters follow the general order of a design sequence in biomedical engineering, from problem identification to validation and verification testing. The first seven chapters, or parts of them, can be used for first-year and sophomore design classes. The next six chapters are primarily for upper-level students and include in-depth discussions of detailed design, testing, standards, regulatory requirements and ethics. The last two chapters summarize the various activities that industry engineers might be involved in to commercialize a medical device. - Covers subject matter rarely addressed in other BME design texts, such as packaging design, testing in living systems and sterilization methods - Provides instructive examples of how technical, marketing, regulatory, legal, and ethical requirements inform the design process - Includes numerous examples from both industry and academic design projects that highlight different ways to navigate the stages of design as well as document and communicate design decisions - Provides comprehensive coverage of the design process, including methods for identifying unmet needs, applying Design for 'X', and incorporating standards and design controls - Discusses topics that prepare students for careers in medical device design or other related medical fields




Biomaterials Science


Book Description

The revised edition of the renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science from principles to applications. Biomaterials Science, fourth edition, provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine.This new edition incorporates key updates to reflect the latest relevant research in the field, particularly in the applications section, which includes the latest in topics such as nanotechnology, robotic implantation, and biomaterials utilized in cancer research detection and therapy. Other additions include regenerative engineering, 3D printing, personalized medicine and organs on a chip. Translation from the lab to commercial products is emphasized with new content dedicated to medical device development, global issues related to translation, and issues of quality assurance and reimbursement. In response to customer feedback, the new edition also features consolidation of redundant material to ensure clarity and focus. Biomaterials Science, 4th edition is an important update to the best-selling text, vital to the biomaterials' community. - The most comprehensive coverage of principles and applications of all classes of biomaterials - Edited and contributed by the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials - Fully revised and updated to address issues of translation, nanotechnology, additive manufacturing, organs on chip, precision medicine and much more. - Online chapter exercises available for most chapters




Basic Transport Phenomena In Biomedical Engineering


Book Description

This text combines the basic principles and theories of transport in biological systems with fundamental bioengineering. It contains real world applications in drug delivery systems, tissue engineering, and artificial organs. Considerable significance is placed on developing a quantitative understanding of the underlying physical, chemical, and biological phenomena. Therefore, many mathematical methods are developed using compartmental approaches. The book is replete with examples and problems.




Introduction to Biomedical Engineering Technology, 4th Edition


Book Description

This updated fourth edition provides current information on devices and is divided into diagnostic and treatment sections. Devices are described with the theory of operation and relevant anatomical and physiological considerations. Aspects of BMET work including test equipment, standards, and information technology are also discussed. The text covers a wide variety of diagnostic and treatment devices currently used in hospitals that students will likely encounter in their career. Principles of operation and examples of use are provided. This book is unique in that it is written by an experienced biomed tech with 30 years’ experience in hospitals rather than by engineers with little frontline experience. It is also unique in that it provides ancillary materials on the web and is the only guide divided into diagnostic and treatment device sections. This new edition also includes two new chapters on computers, information technology, and networking as well as health technology management. From the previous edition: "The book presents a comfortable balance between clinical applications, basic technical information, and various pictures of medical technologies one will encounter in the field. Additionally, related anatomy and physiology principles and essential technical terms are a nice complement to the technologies presented. The everyday duties and responsibilities of a biomed are captured by the various ‘true-to-life’ scenarios introduced throughout the book." —Joey Jones, Madisonville Community College, Kentucky, USA This book is intended for students in biomedical engineering technology and healthcare technology management (BMET/HTM) programs as well as biomedical engineering students. Field service representatives, medical device designers, and medical device sales representatives will also find it useful.




Design of Biomedical Devices and Systems, 4th edition


Book Description

This fourth edition is a substantial revision of a highly regarded text, intended for senior design capstone courses within departments of biomedical engineering, bioengineering, biological engineering and medical engineering, worldwide. Each chapter has been thoroughly updated and revised to reflect the latest developments. New material has been added on entrepreneurship, bioengineering design, clinical trials and CRISPR. Based upon feedback from prior users and reviews, additional and new examples and applications, such as 3D printing have been added to the text. Additional clinical applications were added to enhance the overall relevance of the material presented. Relevant FDA regulations and how they impact the designer’s work have been updated. Features Provides updated material as needed to each chapter Incorporates new examples and applications within each chapter Discusses new material related to entrepreneurship, clinical trials and CRISPR Relates critical new information pertaining to FDA regulations. Presents new material on "discovery" of projects "worth pursuing" and design for health care for low-resource environments Presents multiple case examples of entrepreneurship in this field Addresses multiple safety and ethical concerns for the design of medical devices and processes




The Biomed's Handbook


Book Description