Introduction to Classical and Quantum Harmonic Oscillators


Book Description

From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating concepts, key to understanding the physical universe and a linchpin in fields as diverse as mechanics, electromagnetics, electronics, optics, acoustics, and quantum mechanics. Complete with disk, Introduction to Classical and Quantum Harmonic Oscillators is a hands-on guide to understanding how harmonic oscillators function and the analytical systems used to describe them. Professionals and students in electrical engineering, mechanical engineering, physics, and chemistry will gain insight in applying these analytical techniques to even more complex systems. With the help of spreadsheets ready to run on Microsoft Excel (or easily imported to Quattro Pro or Lotus 1-2-3), users will be able to thoroughly and easily examine concepts and questions, of considerable difficulty and breadth, without painstaking calculation. The software allows users to imagine, speculate, and ask "what if .?" and then instantly see the answer. You're not only able to instantly visualize results but also to interface with data acquisition boards to import real-world information. The graphic capability of the software allows you to view your work in color and watch new results blossom as you change parameters and initial conditions. Introduction to Classical and Quantum Harmonic Oscillators is a practical, graphically enhanced excursion into the world of harmonic oscillators that lets the reader experience and understand their utility and unique contribution to scientific understanding. It also describes one of the enduring themes in scientific inquiry, begun in antiquity and with an as yet unimagined future.




Introduction to Classical and Quantum Harmonic Oscillators


Book Description

From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating concepts, key to understanding the physical universe and a linchpin in fields as diverse as mechanics, electromagnetics, electronics, optics, acoustics, and quantum mechanics. Complete with disk, Introduction to Classical and Quantum Harmonic Oscillators is a hands-on guide to understanding how harmonic oscillators function and the analytical systems used to describe them. Professionals and students in electrical engineering, mechanical engineering, physics, and chemistry will gain insight in applying these analytical techniques to even more complex systems. With the help of spreadsheets ready to run on Microsoft Excel (or easily imported to Quattro Pro or Lotus 1-2-3), users will be able to thoroughly and easily examine concepts and questions, of considerable difficulty and breadth, without painstaking calculation. The software allows users to imagine, speculate, and ask "what if .?" and then instantly see the answer. You're not only able to instantly visualize results but also to interface with data acquisition boards to import real-world information. The graphic capability of the software allows you to view your work in color and watch new results blossom as you change parameters and initial conditions. Introduction to Classical and Quantum Harmonic Oscillators is a practical, graphically enhanced excursion into the world of harmonic oscillators that lets the reader experience and understand their utility and unique contribution to scientific understanding. It also describes one of the enduring themes in scientific inquiry, begun in antiquity and with an as yet unimagined future.




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




Waves and Oscillations


Book Description

This lively textbook differs from others on the subject by its usefulness as a conceptual and mathematical preparation for the study of quantum mechanics, by its emphasis on a variety of learning tools aimed at fostering the student's self-awareness of learning, and by its frequent connections to current research.




From Classical to Quantum Mechanics


Book Description

This 2004 textbook provides a pedagogical introduction to the formalism, foundations and applications of quantum mechanics. Part I covers the basic material which is necessary to understand the transition from classical to wave mechanics. Topics include classical dynamics, with emphasis on canonical transformations and the Hamilton-Jacobi equation, the Cauchy problem for the wave equation, Helmholtz equation and eikonal approximation, introduction to spin, perturbation theory and scattering theory. The Weyl quantization is presented in Part II, along with the postulates of quantum mechanics. Part III is devoted to topics such as statistical mechanics and black-body radiation, Lagrangian and phase-space formulations of quantum mechanics, and the Dirac equation. This book is intended for use as a textbook for beginning graduate and advanced undergraduate courses. It is self-contained and includes problems to aid the reader's understanding.




Understanding Acoustics


Book Description

This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.




Oscillator Representation in Quantum Physics


Book Description

The investigation ofmost problems of quantum physics leads to the solution of the Schrodinger equation with an appropriate interaction Hamiltonian or potential. However, the exact solutions are known for rather a restricted set of potentials, so that the standard eternal problem that faces us is to find the best effective approximation to the exact solution of the Schrodinger equation under consideration. In the most general form, this problem can be formulated as follows. Let a total Hamiltonian H describing a relativistic (quantum field theory) or a nonrelativistic (quantum mechanics) system be given. Our problem is to solve the Schrodinger equation Hlft = Enlftn, n i. e. , to find the energy spectrum {En} and the proper wave functions {lft } n including the'ground state or vacuum lft = 10). The main idea of any ap o proximation technique is to find a decomposition in such a way that Ha describes our physical system in the "closest to H" manner, and the Schrodinger equation HolJt. (O) = E(O)lJt. (O) n n n can be solved exactly. The interaction Hamiltonian HI is supposed to give small corrections to the zero approximation which can be calculated. In this book, we shall consider the problem of a strong coupling regime in quantum field theory, calculations ofpath or functional integrals over the Gaussian measure and spectral problems in quantum mechanics. Let us con sider these problems briefly.




Quantum Oscillators


Book Description

An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other physical topics. These properties are: time-independent behavior, reversible dynamics, thermal statistical equilibrium and irreversible evolution toward equilibrium, together with anharmonicity and anharmonic couplings. As an application of these intricate topics, special attention is devoted to infrared lineshapes of single and complex (undergoing Fermi resonance or Davydov coupling) damped H-bonded systems, providing key insights into this rapidly evolving area of chemical science. Quantum Oscillators is a long overdue update in the literature surrounding quantum oscillators, and serves as an excellent supplementary text in courses on IR spectroscopy and hydrogen bonding. It is a must-have addition to the library of any graduate or undergraduate student in chemical physics.




Classical And Quantum Dissipative Systems (Second Edition)


Book Description

Dissipative forces play an important role in problems of classical as well as quantum mechanics. Since these forces are not among the basic forces of nature, it is essential to consider whether they should be treated as phenomenological interactions used in the equations of motion, or they should be derived from other conservative forces. In this book we discuss both approaches in detail starting with the Stoke's law of motion in a viscous fluid and ending with a rather detailed review of the recent attempts to understand the nature of the drag forces originating from the motion of a plane or a sphere in vacuum caused by the variations in the zero-point energy. In the classical formulation, mathematical techniques for construction of Lagrangian and Hamiltonian for the variational formulation of non-conservative systems are discussed at length. Various physical systems of interest including the problem of radiating electron, theory of natural line width, spin-boson problem, scattering and trapping of heavy ions and optical potential models of nuclear reactions are considered and solved.




Introduction to Quantum Effects in Gravity


Book Description

Publisher description