Introduction to Combinatorics


Book Description

Accessible to undergraduate students, Introduction to Combinatorics presents approaches for solving counting and structural questions. It looks at how many ways a selection or arrangement can be chosen with a specific set of properties and determines if a selection or arrangement of objects exists that has a particular set of properties. To give students a better idea of what the subject covers, the authors first discuss several examples of typical combinatorial problems. They also provide basic information on sets, proof techniques, enumeration, and graph theory—topics that appear frequently throughout the book. The next few chapters explore enumerative ideas, including the pigeonhole principle and inclusion/exclusion. The text then covers enumerative functions and the relations between them. It describes generating functions and recurrences, important families of functions, and the theorems of Pólya and Redfield. The authors also present introductions to computer algebra and group theory, before considering structures of particular interest in combinatorics: graphs, codes, Latin squares, and experimental designs. The last chapter further illustrates the interaction between linear algebra and combinatorics. Exercises and problems of varying levels of difficulty are included at the end of each chapter. Ideal for undergraduate students in mathematics taking an introductory course in combinatorics, this text explores the different ways of arranging objects and selecting objects from a set. It clearly explains how to solve the various problems that arise in this branch of mathematics.




Combinatorial Designs


Book Description

"Combinatorial Designs aims to thoroughly develop the most important techniques used for constructing combinatorial designs. The book provides a detailed and clear exposition of the classical core of combinatorial designs, treating the material progressively from simple to more complex. Readers will master various construction techniques, both classic and modern, and will be well prepared to build a vast array of combinatorial designs. The main prerequisites are familiarity with basic abstract algebra, linear algebra and some number theory fundamentals."--BOOK JACKET.




Introduction to Combinatorial Designs


Book Description

Combinatorial theory is one of the fastest growing areas of modern mathematics. Focusing on a major part of this subject, Introduction to Combinatorial Designs, Second Edition provides a solid foundation in the classical areas of design theory as well as in more contemporary designs based on applications in a variety of fields. After an o




Combinatorial Designs and their Applications


Book Description

The fruit of a conference that gathered seven very active researchers in the field, Combinatorial Design and their Applications presents a wide but representative range of topics on the non-geometrical aspects of design theory. By concentrating on a few important areas, the authors succeed in providing greater detail in these areas in a more complete and accessible form. Through their contributions to this collection, they help fill a gap in the available combinatorics literature.The papers included in this volume cover recent developments in areas of current interest, such as difference sets, cryptography, and optimal linear codes. Researchers in combinatorics and other areas of pure mathematics, along with researchers in statistics and computer design will find in-depth, up-to-date discussions of design theory and the application of the theory to statistical design, codes, and cryptography.




Combinatorial Methods with Computer Applications


Book Description

Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinat




Combinatorial Designs


Book Description




Combinatorial Designs and Tournaments


Book Description

The mathematics of tournament design are surprisingly subtle, and this book, an extensively revised version of Ellis Horwood's popular Combinatorial Designs: Construction Methods, provides a thorough introduction. It includes a new chapter on league schedules, which discusses round robin tournaments, venue sequences, and carry-over effects. It also discusses balanced tournament designs, double schedules, and bridge and whist tournament design. Readable and authoritative, the book emphasizes throughout the historical development of the material and includes numerous examples and exercises giving detailed constructions.




Handbook of Combinatorial Designs


Book Description

Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.




Algorithms in Combinatorial Design Theory


Book Description

The scope of the volume includes all algorithmic and computational aspects of research on combinatorial designs. Algorithmic aspects include generation, isomorphism and analysis techniques - both heuristic methods used in practice, and the computational complexity of these operations. The scope within design theory includes all aspects of block designs, Latin squares and their variants, pairwise balanced designs and projective planes and related geometries.




Combinatorial Design Theory


Book Description

Combinatorial design theory is a vibrant area of combinatorics, connecting graph theory, number theory, geometry, and algebra with applications in experimental design, coding theory, and numerous applications in computer science. This volume is a collection of forty-one state-of-the-art research articles spanning all of combinatorial design theory. The articles develop new methods for the construction and analysis of designs and related combinatorial configurations; both new theoretical methods, and new computational tools and results, are presented. In particular, they extend the current state of knowledge on Steiner systems, Latin squares, one-factorizations, block designs, graph designs, packings and coverings, and develop recursive and direct constructions. The contributions form an overview of the current diversity of themes in design theory for those peripherally interested, while researchers in the field will find it to be a major collection of research advances. The volume is dedicated to Alex Rosa, who has played a major role in fostering and developing combinatorial design theory.