Introduction To Computer Simulations For Integrated Stem College Education


Book Description

This book is written to introduce computer simulations to undergraduate college students, freshmen to seniors, in STEM fields. The book starts with concepts from Basic Mathematics: Geometry, Algebra and Calculus, Properties of Elementary Functions (Polynomials, Exponential, Hyperbolic and Trigonometric Functions) are studied and simple differential equations representing these functions are derived. Numerical approximations of first and second order differential equations are studied in terms of finite differences on uniform grids. Computer solutions are obtained via recursive relations or solutions of simultaneous algebraic equations. Comparisons with the exact solutions (known a priori) allow the calculations of the error due to discretization. After the students build confidence in this approach, more problems where the solutions are not known a priori are tackled with applications in many fields. Next, the book gradually addresses linear differential equations with variable coefficients and nonlinear differential equations, including problems of bifurcation and chaos.Applications in Dynamics, Solid Mechanics, Fluid Mechanics, Heat Transfer, Chemical Reactions, and Combustion are included. Biographies of 50 pioneering mathematicians and scientists who contributed to the materials of the book are briefly sketched, to shed light on the history of these STEM fields.Finally, the main concepts discussed in the book, are summarized to make sure that the students do not miss any of them. Also, references for further readings are given for interested readers.







Creating Computer Simulation Systems


Book Description

This book is an introduction to the High Level Architecture for modeling and simulation. The HLA is a software architecture for creating computer models and simulation out of component models or simulations. HLA was adopted by the US Defense Dept. The book is an introduction to HLA for application developers.




Introduction to Mathematical Modeling and Computer Simulations


Book Description

Introduction to Mathematical Modeling and Computer Simulations is written as a textbook for readers who want to understand the main principles of Modeling and Simulations in settings that are important for the applications, without using the profound mathematical tools required by most advanced texts. It can be particularly useful for applied mathematicians and engineers who are just beginning their careers. The goal of this book is to outline Mathematical Modeling using simple mathematical descriptions, making it accessible for first- and second-year students.




Science in the Age of Computer Simulation


Book Description

"Digital computer simulation helps study phenomena of great complexity, but how much do we know about the limits and possibilities of this new scientific practice? How do simulations compare to traditional experiments? And are they reliable? Scrutinizing these issues with a philosophical lens, Eric Winsberg explores the impact of simulation on such issues as the nature of scientific evidence, the role of values in science, the nature and role of fictions in science, and the relationship between simulation and experiment, theories and data, and theories at different levels of description"--Cover.




Computer Simulation and Computer Algebra


Book Description

The chapter on statistical-physics simulations has been enlarged, mainly by a dis cussion of multispin coding techniques for the Ising model (bit-by-bit parallel oper ations). In the chapter about Reduce, some details of the presentation have been cor rected or clarified. The new operator MATEIGEN for the computation of eigenvec tors of matrices is explained. The first chapter and the appendix remain unchanged. Needless to say, the field of computational science is advancing so quickly, for ex ample with the development of parallel, as opposed to vectorized, algorithms, that it will not be too long before a further edition is called for. Cologne, March 1989 The authors Preface to the First Edition Computers play an increasingly important role in many of today's activities, and correspondingly physicists find employment after graduation in computer related jobs, often quite remote from their physics education. The present lectures, on the other hand, emphasize how we can use computers for the purposes of fundamental research in physics. Thus we do not deal with programs designed for newspapers, banks, or travel agencies, i.e., word processing and storage of large amounts of data.




Computer Simulation of Liquids


Book Description

Computer simulation is an essential tool in studying the chemistry and physics of liquids. Simulations allow us to develop models and to test them against experimental data. This book is an introduction and practical guide to the molecular dynamics and Monte Carlo methods.




Computer Simulation Validation


Book Description

This unique volume introduces and discusses the methods of validating computer simulations in scientific research. The core concepts, strategies, and techniques of validation are explained by an international team of pre-eminent authorities, drawing on expertise from various fields ranging from engineering and the physical sciences to the social sciences and history. The work also offers new and original philosophical perspectives on the validation of simulations. Topics and features: introduces the fundamental concepts and principles related to the validation of computer simulations, and examines philosophical frameworks for thinking about validation; provides an overview of the various strategies and techniques available for validating simulations, as well as the preparatory steps that have to be taken prior to validation; describes commonly used reference points and mathematical frameworks applicable to simulation validation; reviews the legal prescriptions, and the administrative and procedural activities related to simulation validation; presents examples of best practice that demonstrate how methods of validation are applied in various disciplines and with different types of simulation models; covers important practical challenges faced by simulation scientists when applying validation methods and techniques; offers a selection of general philosophical reflections that explore the significance of validation from a broader perspective. This truly interdisciplinary handbook will appeal to a broad audience, from professional scientists spanning all natural and social sciences, to young scholars new to research with computer simulations. Philosophers of science, and methodologists seeking to increase their understanding of simulation validation, will also find much to benefit from in the text.




Computer Simulation Using Particles


Book Description

Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming manufacture.